
Deploying DNSSEC Without a Signed Root

Samuel Weiler

Information Networking Institute

Carnegie Mellon University

April 2004

Table of Contents
Abstract...iii

1 Introduction...1

1.1 DNS Background and Terminology..1

1.2 DNSSEC Background and Terminology...3

1.3 Unsolved Problems: Scaling..5

1.4 Importance of a Signed Root and Signed TLDs...7

2 Problem Statement..8

3 The Designs...8

3.1 Single Zone, Single Label Trust Authorities...9

3.1.1 Resolver Algorithm..11

3.2 Hierarchical Trust Authorities...12

3.2.1 Trust Paths...12

3.2.2 Resolver Algorithms...13

3.3 Design Commonalities...17

3.3.1 Scaling...17

3.3.2 Aggressive Negative Caching..18

3.3.2.1 Aggressive Negative Caching: NSEC Validation.....................................19

3.3.3 The TA Resource Record...20

3.4 Comparison of the Designs..21

4 Alternate Designs and Related Work..22

4.1 Out-of-band...22

4.2 SIG/TA at Child..23

4.3 Alternate Tree...25

4.4 Overlay Tree...25

4.5 FMESHD...26

5 Conclusion..27

5.1 Future Work..27

6 References...29

ii

Abstract

DNS Security (DNSSEC) authenticates DNS data by building public-key signature

chains along the DNS delegation chain from a root of trust, ideally the DNS root. Due to

a myriad of technical and political concerns, it appears unlikely that many delegation-

heavy zones, including the root and most generic top level domains (gTLDs), will sign

their zones in the near future, which leaves DNS resolvers with no means to validate data

from the children of those zones without maintaining a large number of preconfigured

keys.

This paper presents two schemes for publishing secure delegation information outside of

the DNS delegation chain. These will allow resolvers to validate data from zones whose

parents either aren't signed or refuse to publish secure delegations to their children.

Additionally, we introduce synthesis of negative DNS answers as a means for mitigating

query load, and we show how DNSSEC security policy, once thought to be solely a

resolver concern, impacts authoritative server load and protocol design.

iii

1 Introduction

The DNS Security (DNSSEC) extensions aim to provide data authentication for the DNS

as an aid to detecting and deterring assorted attacks, including the spoofing of DNS

answers. DNSSEC has been in development for about ten years, and it appears that many

of the technical problems that have plagued it have been worked out and it may be

nearing deployability. Unfortunately, since it depends on a trust hierarchy that follows

the DNS delegation hierarchy, DNSSEC's utility is largely dependent on having the root

and top level domains (i.e. .com and .net) signed. Due to both technical and political

constraints, it's unlikely that many of those zones will be signed in the immediate future.

Rather than tackle those technical and political hurdles, this paper presents two

mechanisms, called Trust Authorities (TAs), that remove DNSSEC's dependency on

having those high-value zones signed, by creating alternate trees of trust data. These

mechanisms are designed to be sufficiently scalable, efficient, and reliable to be used as

viable alternatives to a signed root.

1.1 DNS Background and Terminology

The domain name system (DNS) is a global distributed database primarily used for

mapping hostnames to IP addresses and IP addresses back to names. It has a hierarchical

namespace with a unique global root, and the namespace is broken up into zones. Within

a zone, a domain name (i.e. www.example.net.) may have multiple DNS resource records

(RRs) of multiple types (i.e. A, MX, SOA, NS). All records of the same name and type

are known as a resource record set (RRset).

A parent zone can delegate a portion of its namespace to a child zone by inserting one or

more NS RRs at some name in its zone. This name is known as a zone cut or delegation

1

point. The NS records give the domain names of the child zone's authoritative

nameservers, which are responsible for answering queries for all names below the zone

cut. (For example, the zone net. may delegate the example.net. namespace by publishing

an NS record at the name example.net.) Both the parent and child zone contain records at

the zone cut, also known as the apex of the zone: the parent contains only an NS RRset,

and the child contains NS, SOA, and perhaps other RRsets.

A DNS client, known as a recursive resolver, caching resolver, or simply a resolver1,

looks up RRsets, identified by query name, query type, and query class (QNAME,

QTYPE, QCLASS) by starting at the authoritative servers for the DNS root. In most

cases, the root returns a referral to one of it's children that is responsible for the

namespace identified by the QNAME (i.e. in response to a query for www.example.net.,

the root might return a referral to the authoritative servers for .net.). The resolver

recursively queries the authoritative servers for each such delegation until it reaches the

zone which is authoritative for the data sought. The authoritative servers for that zone

return the data or an answer showing that no matching data exists.

Most end-user computers, rather than run their own recursive resolvers, include only stub

resolvers. Stub resolvers depend on caching resolvers, which are commonly run by

internet service providers (ISPs). These resolvers typically cache all data received for a

length of time (TTL) indicated by the authoritative server. This widely deployed caching

infrastructure has contributed greatly to the scalability and success of the DNS.

The DNS is very complex and many details of it are omitted from this discussion,

including classes other than IN, wildcard processing, and many special rules for handling

certain RRs (i.e. CNAME). While consideration of those details is vital when extending

1 Although it is possible to have a non-caching recursive resolver, it is common for all recursive

resolvers to include a cache. The terms resolver, recursive resolver, full-service resolver, and caching

resolver are used interchangeably in this paper.

2

the DNS protocol, they have not necessitated changes to the designs presented here.

Anyone contemplating modifying these designs is advised to pay careful attention to the

DNS specifications and to the lessons learned in the development of DNSSEC.

1.2 DNSSEC Background and Terminology

DNS does not provide any data authentication or other provisions to prevent the

malicious modification or substitution of DNS data. Such attacks are very easy, and

simple tools to perform them are widely available.

The DNS Security (DNSSEC) extensions were designed to address these weaknesses by

using chains of public-key signatures to authenticate DNS data. Such signatures,

combined with the data they sign, essentially form a certificate chain, similar to that used

by SSL or PGP. These chains start with a trusted key for some zone, ideally the root, that

is preconfigured into DNSSEC-aware resolvers or validators, and proceed along the DNS

delegation hierarchy to authenticate a given piece of DNS data.

DNSSEC introduces four new RR types to the DNS: the DNSKEY, RRSIG, DS, and

NSEC RRs. We'll first discuss the DNSKEY, RRSIG, and DS records, which are used to

build DNSSEC chains of trust, then we'll discuss the NSEC RR. DNSKEY RRs appear

at a zone apex and store public keys used to authenticate that zone's data. Each RRset

(all RRs of the same name and type) in that zone is signed by the private key(s)

corresponding to one or more of those DNSKEYs. The digital signatures are stored in

RRSIG RRs, which also include a time interval during with the RRSIG is considered to

be valid. RRSIG RRs, together with the corresponding DNSKEYs, authenticate a

particular RRset. In this paper, we'll use the notation RRSIG(A) to denote an RRSIG that

authenticates an A RRset.2 DS (Delegation Signer) RRs may appear at a delegation point

2 A records store IPv4 addresses

3

in the parent zone and, along with an RRSIG(DS), authenticate a particular DNSKEY in

the child zone. The child zone may use that particular DNSKEY, known as a secure

entry point (SEP) key or key signing key (KSK) to sign it's DNSKEYset. Any of the

DNSKEYs in the DNSKEYset may then be used to sign other data in the zone.

Any given DNS zone may choose to be signed or not. If a zone's parent includes a DS

RR for the zone (along with the usual NS RRset), it is said to be secure (or a secure

delegation). If there is no DS in the parent, it is unsecure (or an unsecure delegation). In

essence, the presence of a DS RR in the parent tells a validator to expect the child to be

signed. Similarly, a preconfigured key tells a validator to expect some zone (again,

ideally the root) to be signed. If such an expectation is established for a given zone,

whether by the validator having a preconfigured key for it or by having a signed DS at

the zone's parent, the validator may give an error if any data in that zone fails to validate.

The NSEC (Next SECure) RR is used to prove which data is and is not in a zone. One

NSEC appears at each name in the zone, and it lists the RR types present at that name as

well as the next name in a canonical ordering of the zone. A NSEC RR (along with the

RRSIG(NSEC)) proves that there are no other records in the zone between the record

which is the name of the NSEC and the 'next name' to which it points. The NSEC at the

last name in that canonical ordering points back to the apex of the zone, forming a

complete ring. Authoritative servers generally send NSEC RRs as part of proofs that data

does not exist (i.e. when an NXDOMAIN response would be appropriate). In particular,

a signed NSEC is sent by each parent sending a delegation to an unsecured zone to prove

that is has no DS RR for that child.

As currently defined, DNSSEC allows a resolver to classify data into one of three

categories: secure, (verifiably) unsecure, or bad/bogus. Absent a preconfigured trusted

key, all data is necessarily unsecure. Any data for which the validator can't determine a

security status, whether because the appropriate RRs weren't accessible or because a

4

cryptographic signature validation failed, is classified as bad.

The DNSSEC protocol specifications are currently scattered across a number of RFCs

dating back to 1999, many of which are nearly unreadable. An effort is underway in the

IETF's DNS Extensions (DNSEXT) working group to rewrite and clarify those

specifications, consolidating all of the changes into a single set of three documents.

[DNSSECbis-1][DNSSECbis-2][DNSSECbis-3] Although those three documents,

commonly known as DNSSECbis, are only available as works-in-progress, their technical

content is relatively stable and they are nearing publication as RFCs. Because they

contain some important clarifications, this paper is based on the understanding of

DNSSEC contained in them.

1.3 Unsolved Problems: Scaling

DNSSEC causes significant growth in both zone size and DNS query response size.

Specifically, DNSSEC adds an NSEC RR for each name in a zone and an RRSIG RR for

each RRset at that name, including the NSEC RR. Each RRSIG is likely to be much

larger than the RRs it covers. An RRSIG record has an 18 octet preamble, a domain

name (indicating the zone that generated the signature), and a digital signature.

Assuming that a 1024 bit RSA key is used, an RRSIG is likely to be over 150 bytes long.

For zones consisting primarily of A or PTR records, this adds three records per name in

the zone, increasing the zone size by an order of magnitude.

At a delegation, DNSSEC adds at least two RRs to the parent zone: an NSEC RR and and

RRSIG(NSEC). Compared to an unsigned delegation, which likely contained two NS

records and nothing else, DNSSEC at least doubles the number of records at a delegation

and increases the number of bytes at the delegation by an order of magnitude (assuming

signatures made by 1024 bit RSA keys). Secure delegations add at least two more

5

records (DS and RRSIG(DS)), causing another factor of two growth.

For both of the above cases, the described growth occurs in both the zone size and the

response size. For a small site running a few zones incidental to the operation of a small

network (a small university, for example), DNS probably consumes only a small portion

of the site's available bandwidth and the zone size growth doesn't impose significant new

network or hardware provisioning requirements. For zones with a large number of

records or referrals, the zone size growth can be particularly problematic -- at least one

popular open-source authoritative nameserver requires that the entire zone be loaded into

RAM, and the growth caused by DNSSEC can force the use of 64-bit hardware for

serving those zones. Even if the zone is small, a zone with a high query load may also

need to increase its network provisioning to deal with the extra load caused by DNSSEC.

To take a real example, researchers at NLnet Labs saw the .nl zone grow by a factor of

five when they signed it with a 1024-bit RSA key, even though it contained almost no

secure delegations (DS records), their NSD authoritative server software needed 4-6

times the memory to serve a signed zone[Rozendaal].

As a result of this growth in both hardware and bandwidth requirements, large

infrastructure zones including the generic top-level domains (gTLDs) such as .com, .net,

and .org face a large hurdle for adopting DNSSEC. Representatives of VeriSign, the

operator of the .com and .net zones, have said that the costs of implementing DNSSEC

are so prohibitive that VeriSign is unlikely to find a business case sufficient to justify

signing .com and .net.

VeriSign proposed a DNSSEC extension to mitigate some of the effects of this zone

growth. Called opt-in, this extension allowed zones to mark spans between NSEC

records as unsigned and allowed unsigned delegations to appear in those spans. This

permitted various attacks to names in those spans including allowing delegations within a

span to be spoofed away and allowing bogus delegations to be inserted. The benefit of

6

opt-in was that only secured delegations (ones with DS records) required NSEC and

RRSIG(NSEC) records -- while the remaining delegations were allowed to have NSEC

and RRSIG records, those records were not required. Opt-in would have allowed

delegation-heavy zones such as .com to grow approximately linearly as secured

delegations were added. It would also have allowed for registry business models that

charged for having a signed delegation, whether or not the delegation was secure (had a

DS record). The IETF's DNSEXT working group failed to reach consensus to add opt-in

to the DNSSEC specifications, and it appears unlikely that opt-in will be revived.

Scaling presents a relatively minor problem for the root zone. With only ~300 entires in

the zone, zone file growth is not a problem. Response size growth would be a problem

except for the efforts that the root operators have made in recent years to build capacity,

largely in response to distributed denial of service attacks.

1.4 Importance of a Signed Root and Signed TLDs

It's possible for zone administrators to sign their zones without involvement from their

parents, but clients will not be able to validate those signatures without a secure entry

point into the zone. If the parent isn't providing that in the form of a signed DS record, a

client's only alternative is to preconfigure a key for the zone. While that's certainly

possible, it's impractical for resolver operators to preconfigure keys for a large number of

signed zones. As discussed above, keeping even a single preconfigured key up-to-date is

expected to present a challenge to most resolver operators.

Since much of the value in DNSSEC is in allowing parties that have limited or no trust

association with each other to communicate securely, it's desirable for resolvers to have

access to as wide a range of secure entry points as possible. The obvious way to achieve

that is by signing high value zones, such as the root and TLDs. As discussed above, for a

7

variety of economic and political reasons, it is unlikely that many of those high value

zones will be signed in the immediate future.

2 Problem Statement

This paper presents two ways of publishing and retrieving information about secure

delegations that don't require the cooperation of the secured zones' ancestors. These

schemes make it possible for resolvers to validate data from a large number of signed

zones without requiring that each resolver maintain a large list of preconfigured trust

associations and without requiring high-value zones (such as the root and TLDs) to be

signed.

The primary design constraint for both schemes is deployability -- they need to be both

technically and politically feasible. On the technical side, that means that the code,

particularly resolver code, must not be excessively complicated; that the mechanism not

impose excessive load on the network; and that the startup cost to run a trust authority be

as low as possible. Furthermore, the schemes must not cause harm to non-participants.

On the political side, the schemes should not be vendor-specific nor create any artificial

monopolies, lest they be shunned by potential users as having too little utility or

disproportionately benefiting some party.

This paper assumes that zones wishing their own data to be secured are capable of

signing their own zones, but that an ancestor zone is either unwilling to be signed or

unwilling to include a DS record for the relevant child zone.

3 The Designs

8

Since the primary motivation behind this work is the need to work around particular high-

value zones (such as the root and TLDs) not being signed by their respective zone

operators or registries, it is valuable to specify a scheme that is only usable to make trust

statements about a single zone. A single-zone scheme is also much simpler than a

scheme that will work for an entire hierarchy. A scheme that will work for multiple

zones is discussed in section 3.2.

3.1 Single Zone, Single Label Trust Authorities

A Trust Authority (TA) is a portion of the DNS namespace that contains trust statements

about zones that are not its own children. Specifically, it contains the keying information

needed to authenticate answers from those zones. For simplicity, TA domain must be

used exclusively as a TA; it must not contain other data.

This section presents a design for a Trust Authority (TA) that can make statements about

children of a single zone, called the 'target zone'. This particular design is limited to

making trust statements about children of a target zone which only have one additional

label. For example, a TA for .net may include statements about example.net but may not

include statements for child.example.net. Such a TA would be most usefully used when

the target zone has few or no multi-label delegations. The root, most TLDs, and several

zones that act as TLDs (i.e. co.uk, ac.uk) fit that description.

Throughout this section, we will use as an example the ta.com zone, which is a TA for

the target zone .net. ta.com is assumed to be signed with DNSSEC, and a DNSSEC-

aware resolver is assumed to be configured to use ta.com as a TA for .net. The resolver

is also assumed to have a secure entry point into ta.com, which may be a preconfigured

key for ta.com, a preconfigured key for .com along with a secure delegation (DS record)

into ta.com or a preconfigured key for the root along with a secure delegation into .com

9

and from .com to ta.com.

A TA consists of a DNS zone containing one name for each of the target's child zones

that has registered security information with the TA. For a given zone, the corresponding

name in the TA zone is formed by replacing the target zone name with the TA zone

name. Using the example, information concerning the zone example.net can be found at

example.ta.com.

At each such name, there is a TA resource record. The TA resource record uses the same

format as the Delegation Signer (DS) record, shown in Figure 1.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | key tag | algorithm | Digest type |

 +-+

 | digest (length depends on type) |

 +-+

Figure 1

The fields in the TA record contain exactly the same data as the DS record and use the

same IANA-assigned values in the algorithm and digest type fields as the DS record.

(Those IANA registries are known as the "DNS Security Algorithm Numbers" and "DS

RR Type Algorithm Numbers" registries.)

When a TA wants to include a record for a particular child of the target zone, it merely

inserts a TA RR into its zone, using the naming convention described above. Just as with

the DS records, the digest field of the TA record contains a hash of a DNSKEY used to

sign the apex DNSKEYset in the target's child's zone.

10

3.1.1 Resolver Algorithm

In summary, a resolver first gets the answer it desires using normal DNS lookups, then

validates the answer using a TA.

To validate a record, a resolver checks its preconfigured list of TA's for any that are

applicable to the name being queried (the QNAME). It starts by looking for the most

specific match then strips off leading labels until a match is found. Having found such a

TA, it asks that TA for the TA RR corresponding to the name being sought. If there is a

corresponding TA RR, the resolver validates it then uses it as though it were a DS RR to

validate the remainder of the answer.

Using the example above, to look up the www.example.net A RRset, a resolver first

completes its normal lookup process for the A RRset. Then it searches its list of

preconfigured TA's, starting by looking for a www.example.net TA and proceeding to a

.net TA. Having found a TA for .net, it then asks that TA for the example.ta.com TA RR.

If there is a TA RR, and it validates, the resolver treats that TA RR as a DS RR for

example.net and proceeds with validating the www.example.net A RRset (or the negative

response indicating that no such RRset exists). Specifically, the resolver uses the TA RR

to validate example.net's DNSKEY RRset then uses the DNSKEY RRs to validate the

www.example.net A RRset.

If there is no TA RR for example.ta.com, then no trust information is available, and the

resolver proceeds just as though .net were signed and contained no example.net DS

record, treating the result of the A record lookup as an insecure response. A special case

occurs when the .net nameservers say that there is no example.net delegation, but there

exists an example.ta.com TA RR. In that case, the presence of a TA RR asserts that the

example.net zone should exist, and the resolver should treat the non-existence answer as

11

bad data. Similarly, a TA lookup occurs even if the original query returns NXDOMAIN

(the usual response showing that a name doesn't exist) -- if a TA record exists at the

QNAME, real signed data should have existed there, too.

It's quite possible that the zone containing the sought-after data will be more than one

delegation below the TA's target zone. In such cases, the TA is treated as a secure entry

point into the target's child, then normal DNSSEC chaining is used below that point. For

example, if child.example.net is a secure delegation from example.net, meaning that

example.net contains a DS record for child.example.net, the example.net TA RR and the

example.net DNSKEYset can be used to validate the child.example.net DS record, etc.

3.2 Hierarchical Trust Authorities

Extending the above design to handle the entire DNS hierarchy or some subtree of it

requires only minor changes to the data stored. Using a hierarchical TA, though, makes

the resolver logic noticeably more complex.

A hierarchical TA tree, rather than being a flat zone with single-label names, may have

depth and the target, rather than being a single zone, becomes an entire hierarchy. Using

the example in the previous section, where ta.com was a TA targeting .net, ta.com could

contain TA records named example.ta.com as well as child.example.ta.com. It could also

have a TA record at the name ta.com that refers to the .net zone. A TA targeting the root

could have TA records for any DNS name, including one for the root itself. Within this

tree, there can be normal secure delegations (using DS records, just as in the main tree).

3.2.1 Trust Paths

Providing an alternate hierarchy of trust data allows resolvers to implement multiple

12

security policies. These are primarily of interest when validation would give different

results depending on which tree(s) is used. In this discussion, the term "trust path" refers

to a chain of signed DS, DNSKEY, and TA records from a trusted key (as would be

preconfigured into a resolver) to the answer being validated. Absent the mechanisms

introduced in this paper, DNSSEC trust paths contain only signed DS and DNSKEY

records.

A resolver can use a trust path that starts in a TA tree and then flows into the main

delegation tree. It's not possible, as currently specified, to follow a path from the main

delegation tree back into a TA tree. Thus, the number of possible trust paths to any given

RR, assuming only one TA tree, is limited to the number of labels in the name of the RR

plus two. For example, a resolver attempting to validate an A record at

www.example.net can follow five paths:

1) using only the main delegation hierarchy (DS and DNSKEY records), starting at a

preconfigured key,

2) starting with a TA record for www.example.net, looking for DNSKEYs at

www.example.net, and using those DNSKEYs to validate the A record.

3) starting with a TA record for example.net,

4) starting with a TA record for .net, or

5) starting with a TA record for the root.

It's possible for each of these trust paths to give different validation results.

3.2.2 Resolver Algorithms

Which trust paths a resolver uses can have a noticeable impact on the utility of TAs and

on the DNS query load experienced by the TA servers. In this section, we introduce five

possible resolver policies (again, assuming only a single TA), then discuss the resolver

13

algorithm required to implement each and the impact of those algorithms on the TA

servers and the DNS as a whole.

Each of these algorithms is complicated by the fact that DNS does not require a

delegation at every label cut. For example, the zone foo.bar.example.net could be a child

of example.net; there need not be a bar.example.net zone nor even any record with that

name. While we can specify that TA records may only exist at zone cuts, depending on

the policy chosen, a resolver may not be able to rely on the main delegation tree to tell us

where zone cuts are.3 Instead, the resolver must search the TA tree looking for TA

records at all possible zone cuts.4 The policies discussed are:

1. Accept any success

2. Failure trumps

3. Closest encloser trumps

4. Parent masks

5. Accept first answer

Using Policy 1, "accept any success", a resolver looks for any trust path that validates. If

a path results in a validation failure or in a proof of insecurity, the resolver keeps trying

other paths until it gets a success or exhausts all possible paths. If no path results in a

successful validation, and at least one fails validation, a failure is returned.

Using policy 2, "failure trumps", a resolver explores all possible trust paths until it finds

3 If a resolver relies on the main delegation tree to report where zone cuts are, it leaves itself vulnerable

to attack if any of its ancestors are insecure -- an attacker need only forge an answer from an insecure

ancestor, spoofing away all of the delegations down to the QNAME. Since the resolver sees no

delegations, it doesn't check the TA tree as described in section X to see if such delegations should

have existed.

4 The algorithm for this is similar to the algorithm described in RFC3658 section 2.2.1.2 for finding a

zone's parent. Before DNSSEC, it was never necessary to find a zone's parent (or any other zone cut),

and the protocol has no provision to do so.

14

one that fails. If any path results in a validation failure, the entire result is treated as a

failure.

Using policy 3, "closest encloser trumps", a resolver looks for the longest TA record

which could be an ancestor of the requested name, and attempts validation from that

point downward. With this policy, a TA record for www.example.net would take

precedence over TA records for example.net and its parents. This is the same policy that

is described in section 3.1 (Single-Zone, Single-Label TAs) for choosing which TA to

use.

Using policy 4, "parent masks", a parent's TA record takes precedence over any for it's

children. If there is a TA record for .net, a TA record for example.net will be ignored.

Using policy 5, "accept any answer", a resolver can start with any of the possible trust

paths. The first validation result is taken as the result of the validation.

With all of the above policies, it is assumed that if all paths show the answer to be

insecure (no relevant TA records and no path in the main tree), the answer will be flagged

as insecure.

A resolver is not completely free to choose among these policies: some violate design

constraints on the problem and others have a major impacts on the deployability of TAs,

mostly due to the query load they impose on the TA zones' servers.

Policy 5, accept any answer, can be quickly discarded because it allows for a resolver to

get a different validation result depending on what queries it has seen before. In general,

to minimize query load, a resolver would choose those trust paths that can be tested based

on cached data. Since contents of a resolver's cache depends almost entirely on the

history of queries it has received, the choice of path taken, hence the validation result,

15

would depend on the history of queries that resolver has made.

Policy 4, parent masks, can also be discarded. It is an extremely efficient policy,

particularly when many TLDs or the root are signed, but it needlessly limits the utility of

TAs. It prevents a TA from having both an entry for the root and entries for second-level

names, such as example.net.

Policy 3, closest encloser trumps, is an attractive policy. First, it helps zones work

around the problem of an uncooperative or unresponsive parent that refuses to update a

DS record. A resolver using this policy, though, must generate at least one query to the

TA tree for each new query name. It starts by searching the TA tree for a TA record of

the exact name being sought. If it finds one, it uses it for validation. If it doesn't find

one, it removes one label from the QNAME and tries again, all the way up to the target

zone of the TA. This algorithm is relatively simple and easy to understand. The main

drawback to it is that the TA servers become uber-resolvers -- every new query handled

by each resolver that uses that TA winds up hitting the TA servers.

Policy 1 and 2 have similar algorithms and similar performance impacts. Each makes

excellent use of caching, particularly when the root and TLDs are signed. To minimize

query load, resolvers using either policy would first test those trust paths that can be most

easily tested using only cached data. Only then would they begin querying the TA tree

for new data. Absent further optimizations such as the 'closer encloser answers'

discussed in section X, it would be most efficient for these resolvers to then look for a TA

RR for the TA's target zone and then proceed to add labels until they reached the

QNAME. At the first validation success (in the case of policy 1) or failure (in the case of

policy 2), an answer could be returned.

Policy 2, failure trumps, makes the DNS unnecessarily brittle. With it, any

misconfiguration at any ancestor zone can make a zone unreachable. For that reason, this

16

policy is best avoided. It is also more inefficient when data is properly signed, since it

exhaustively looked for bad data.

Policy 1, accept any success, is a very attractive policy. It is the most liberal of the

policies discussed, providing the most opportunities to work around an uncooperative or

malicious parent zone. It can also be very efficient when data is properly signed. Policy

1 can be much less efficient.

In summary, policies 1 and 3 are noticeably more appealing than 2, 4, and 5 because both

provide a trivial means for working around an uncooperative or malicious ancestor zone.

Because policy 3 will impose so much more load on TA server than policy 1, policy 1 is

recommended.

3.3 Design Commonalities

3.3.1 Scaling

Both of the designs presented here require, as part of the resolution algorithm, one or

more queries to the TA zone(s) for each client DNS lookup.

For both designs, query load on the TA servers scales linearly in the number of resolvers

using the TA. For the single-zone design, the load is a proportion of the load seen by the

target zone's authoritative servers. For the hierarchical design, the load is a proportion of

the load seen by the authoritative servers for all zones in the hierarchy targeted by the

TA.

It's reasonable to expect that some TA's will be sparsely populated compared to their

target zones. In particular, it's likely that any TA for a global top-level domain such as

17

.com will have vastly fewer entries than its target zone. To facilitate deployment of a

TA, it would be preferable if the query load on the TA servers scaled linearly as the

number of TA entries increased and tapered off to near zero when there are few entries in

the TA zone. Aggressive negative caching, presented below, accomplishes this.

3.3.2 Aggressive Negative Caching

One of the long-standing assumptions about DNS cache design has been that resolvers

should cache all answers, including negative responses, indexed by (QNAME, QCLASS,

QTYPE). A cache is not expected to synthesize an answer to any query; it is expected to

answer only those questions when it has been asked before.

DNSSEC slightly changes those caching rules by adding an additional bit to the index

tuple -- the CD, or checking disabled, bit. This is a bit that can be set by a resolver (or

stub resolver) instructing other resolvers to not perform DNSSEC validation. It is

supposed to be set only by a resolver that is itself capable of DNSSEC validation and is

intended to allow such a resolver to receive data that might otherwise be blocked by a

misconfigured resolver/validator.

DNSSEC's architecture also allows for a more drastic change to the caching architecture

for negative answers. NSEC records, since they specify a range in which no names are to

be found, give a caching resolver information about more names that just the one queried

for. It is possible for a resolver to take an NSEC from a previous query and synthesize an

answer to a different query. For example, a resolver that, in response to a query for UL.,

had received an NSEC for the name UK. showing a next name of US., could infer that

UM. does not exist and could synthesize an answer to that effect.

Such synthesis has previously been discouraged because it needlessly extended the scope

18

of DNSSEC -- there was reluctance to use DNSSEC to add new features to DNS (such as

query load reduction) that weren't specifically related to data authentication. There was

also some fear that aggressive negative caching would make the DNS more brittle by

introducing new failure modes. The dangers of negative caching chronicled in RFC2308

section 9 may have driven this concern.

With a sparsely populated TA, aggressive negative caching is very helpful in reducing

query load on the TA servers. Aggressive negative caching caps the number of queries a

resolver will issue to a TA hierarchy to twice the number of entries in that TA hierarchy

-- one query for each entry, and one query for each NSEC. In a very sparsely populated

TA hierarchy (i.e. one that contains 1,000 entries for children of .net), even a very active

resolver will probably issue no more than ~1,000 queries to the TA servers during every

TTL.

3.3.2.1 Aggressive Negative Caching: NSEC Validation

Aggressive negative caching increases the need for resolvers do some basic validation of

incoming NSEC records before caching them. In particular, the 'next name' field in the

NSEC record must be within the zone that generated (and signed) the NSEC. Otherwise,

a malicious zone operator could generate an NSEC that reaches out of its zone -- into its

ancestor zones, even up into the root zone -- and use that NSEC to spoof away any name

that sorts after the name of the NSEC. We call these overreaching NSECs. More

insidiously, an attacker could use an overreaching NSEC in combination with a signed

wildcard record to substitute a signed positive answer in place of the real data. This

checking is not a new requirement -- these attacks are a risk even without aggressive

negative caching.

However, aggressive negative caching makes the checking more important. Before

19

aggressive negative caching, NSECs were cached only as metadata associated with a

particular query. An overreaching NSEC that resulted from a broken zone signing tool or

some misconfiguration would only be used by a cache for those queries that it had

specifically asked before. Only an overreaching NSEC actively served by an attacker

could cause misbehavior. With aggressive negative caching, an overreaching NSEC can

cause more broader problems even in the absence of an active attacker. This threat,

which can be easily mitigated by checking the bounds on the NSEC, can be compared

with the cache poisoning attacks which have long plagued DNS.

It is suggested that all validators using a trust authority implement aggressive negative

caching.

3.3.3 The TA Resource Record

Both of these designs use a new DNS RR type, the TA RR. This choice was driven by

two factors: the unsuitability of existing type codes, particularly DS, and the availability

of new type codes.

Reuse of the DS RR might appear to be very sensible, given that the information needed

in the TA record is exactly the same as that in the DS record. The DS RR, though, has

some very special semantics that make reusing it risky. First, resolvers only expect to see

it at a zone cut. It's not known how resolvers will behave when they see a DS that is not

at a zone cut. Furthermore, the DS RR exists only at the parent side of a zone cut, and it's

the only record with that distinction. That characteristic has caused numerous

compatibility problems with legacy resolvers [RFC3755] [RFC3658]. Rather than risk

causing more problems by putting DS RRs at non-delegations, it seems wiser to use a RR

with more normal semantics. Furthermore, avoiding DS leaves us free to use it in the

normal way in a full-hierarchy TA tree to make secure delegations. Delegating away

20

parts of a TA zone could help make the service more scalable.

Use of another existing DNS RR type with "normal" semantics, such as the TXT RR or

the appropriately-named SINK RR, would avoid the need to allocate a new RR, but it

could lead to confusion when other applications use those records to store data. The

problems with reusing one RR type for multiple purposes is well-documented in

RFC3445, which prohibited the use of KEY resources records (the predecessor of

DNSKEY) to store keys for anything other than DNSSEC.

Using a new RR type requires that a type code be assigned by the Internet Assigned

Numbers Authority (IANA). While there are type codes that can be assigned without

IETF consensus, DNSSEC is presently limited to securing type codes under 128, and

assignment of the codes in that range requires IETF consensus [RFC2929]. Experience

has show that achieving IETF consensus for the allocation of new type codes takes many

months, even in the best of cases [IPSECKEY] [RFC3755], making it unlikely that the

process could be completed within the timeframe of this work. An effort is underway in

the IETF's DNSEXT working group that will allow DNSSEC to secure typecodes greater

than 127. For the purposes of this work, it is reasonable to assume that DNSSEC will

soon be able to secure type codes greater than 127 and that IANA will assign such

typecodes without great delay.

3.4 Comparison of the Designs

Each of the two designs presented in this section have merits. The single-zone, single-

label design is much simpler, particularly in the resolver. It requires, though, running a

separate TA for each target zone. If one wants TAs covering the root, .com, .org, and

.net, four TAs must operate, and each resolver needs four preconfigured TA keys. The

hierarchy design allows for a single TA to handle the entire DNS namespace with only a

21

single preconfigured key. Furthermore, the single-label design imposes an artificial

constraint on TAs: since DNS delegations can comprise multiple labels, this design

needlessly prohibits securing some subset of DNS delegations.

There is another reason, though, to prefer the single zone design. Imagine that neither the

root nor .net is signed, and a hierarchical TA starting from the root has an established and

thriving business selling entries in its hierarchy to children of .net. Its zone would

contain no TA records for ta.com (the root) nor net.ta.com, but many thousands of

records for ???.net.ta.com. If .net were to subsequently sign its zone, it might want this

TA to insert a TA record at com.ta.com. If the TA did this, however, the children of .net

would have little need to maintain their own entries in the TA hierarchy (since they could

be securely reached through the net.ta.com entry into .net followed by the regular DS

record in the delegation from .net), and the TA would presumably lose quite a bit of

business. Consequently, the TA would probably be unwilling to insert a TA record for

net.ta.com or it would charge an obscene sum for doing so. Given this analysis, a

resolver vendor that wanted to encourage vigorous competition among TAs at multiple

levels of the DNS hierarchy might not want to implement the hierarchical scheme.

Instead, that resolver vendor might want to find some way to make it relatively easy to

preconfigure multiple TAs.

4 Alternate Designs and Related Work

4.1 Out-of-band

It would be relatively easy to design a mechanism for storing and retrieving trust

statements outside the DNS. An HTTP-based lookup engine, much like a PGP key

server, could serve the purpose, as could a custom-built directory service.

22

One obvious objection to such a scheme is that finding the directory service could depend

on the DNS. That objection is more one of availability than a security concern --

assuming the data were still signed with a well-known key, data authenticity wouldn't be

an issue.

Another objection to going out-of-band is the number of port-filtering firewalls in the

world. There are many firewalls that allow clients behind them to make arbitrary DNS

queries, but do not allow connections to an arbitrary port, such as the directory service

might use.

The most compelling reason to keep the security data in-band is to take advantage of the

deployed DNS caching infrastructure while avoiding unpleasant interactions with other

proxies and caches. Without a caching system, the servers providing this data must be

prepared to handle one or more queries each time a client does a DNS lookup. The

present DNS caching architecture is quite effective and should cause TA servers to see

dramatically fewer queries than the aggregate number of DNS queries issued by the DNS

resolvers using that TA. This will lower the provisioning needs of TAs and make

operation of them much less expensive. Layering the directory service on top of HTTP,

while it's likely to avoid port-filtering firewalls, subjects the data to "transparent" HTTP

caches, which could deliver stale data to resolvers while giving the resolver no way to ask

for fresh data.

4.2 SIG/TA at Child

An alternative to setting up a Trust Authority that maintains secure delegations for

children is to store the credentials issued by the TA in the child zone. This would relieve

the query load constraints that result from running large nameservers (or any large

23

directory service). In many ways, this is comparable to the SSL security model, in which

public key certificates are stored and distributed to clients by the servers being

authenticated, not by the certificate authority.

It would seem relatively simple to store the TA credential, signed by the Trust Authority,

in the zone it refers to. A similar scheme was used by DNSSEC before the advent of

Delegation Signer: RFC2535 describes how a parent can generate a SIG over each child's

KEY RR. The child then stores that SIG in its own zone, a scheme known as SIG@child.

Experimental operation with SIG@child led to the conclusion that it was unscalable.

Unlike SSL, in which certificates typically have year or multi-year validity intervals, the

DNSSEC designers assumed that parents would want to change their keys on a regular

basis, perhaps monthly or even daily. At the least, it was assumed that the validity period

for a SIG would be set relatively short, in part because no revocation mechanism is

available. Given that assumption of short SIG validity or rapid KEY rollover, it follows

that the parent must keep in frequent contact with all of its children. That imposes a

number of timing interdependencies between parent and children which were seen to be

unmanageable for zones with many delegations. For the same reasons that SIG@child

was rejected, storing TAs in the zones they refer to is problematic.

Furthermore, DNSSEC's security model differs from that of SSL, in that SSL provides no

mechanism to help a user determine whether a service should be using SSL, where

DNSSEC insists that the security status of zones be definitively proved. With

SIG@child, for each child zone that wasn't signed, the parent zone had to generate and

store 'NULL KEYs' and SIGs in its own zone to prove that the child was insecure.

Because we want entities other than the target zone owner to be able to run TAs, the

mechanisms in this paper don't require that a TA know all of the delegations that are

present in its target zone -- instead, we prove the insecurity of zones by the absence of a

TA record, substantiated by the TA's NSEC chain. Whether we use the NSEC chain

mechanism or the per-child enumeration mechanism from SIG@child, these DNSSEC

24

design constraints still require the operation of a large database service, avoidance of

which is the main draw of storing certificates in the zones to which they refer.

4.3 Alternate Tree

One alternative to publishing trust data to supplement the data in the main delegation tree

is to operate an entirely separate signed tree. Such a scheme would present multiple

difficulties, both technical and political. On the political side, there is great opposition to

any sort of "alternate" namespace, largely grounded in the opinion that the DNS should

be consistent -- it should never be possible to get different answers to the same query. On

the technical side, to sign a zone, the entire zone must be available. This generally

requires the participation or at least the consent of each such zone operator, which

imposes limits on the scheme. For example, an alternate tree starting at the root could not

contain any secure delegations to the children of .net without access to the entire .net

zone.

4.4 Overlay Tree

A variation on the above scheme is to have the alternate tree contain only a portion of the

data in the "real" tree. Resolvers would first query the alternate (signed) tree. Only if

they didn't find an answer there would they turn to the unsigned tree. A new signed zone

could be inserted into the signed tree even without the cooperation of the zone's

ancestors.

This scheme is very similar to what has been proposed in this paper, but it does allow for

inconsistencies between the two trees. In particular, delegations in the alternate tree

could (and likely would) point to different authoritative servers that the delegation at the

same name in the "real" tree. Zones in the alternate tree could also have different data

25

than zones in the main tree. For example, there might be an A record for

virus.microsoft.com in the alternate tree but no such entry in the "real" tree, or the

www.cnn.com A records in each tree could be different.

4.5 FMESHD

USC's Information Sciences Institute and Network Associates Laboratories had a

DARPA-funded research project that proposed to join "islands of trust" by providing

some way for resolvers that trusted some portion of the hierarchy to gain knowledge

about a portion of the hierarchy. For example, it aimed to have resolvers that only had a

preconfigured trusted key for af.mil be able to trust data from .com. Called "FMESHD:

Flexible Mesh of Trust Applied to DNSSEC", the project would, in its extreme form,

have provided a way for any zone to make trust statements about any other zone. The

process and policy for handling those statements in the resolver would necessarily be

complicated, particularly when chains of transitive trust were being followed. This

problem is reasonably tractable when the entire set of connections is known in advance,

such as when finding paths in the PGP web of trust. It becomes more complicated and

much slower when each of those paths must be independently discovered with a DNS

lookup.

The FMESHD project was waylaid by more pressing concerns about DNSSEC's

operational viability, and the above goals were never achieved.

In many ways, the designs presented here are more limited variants of FMESHD -- they

eliminate the infinite chaining of trust and permit only certain special zones to make trust

statements about other zones that aren't their children. This noticeably simplifies the

resolution process.

26

5 Conclusion

Each of the Trust Authority designs presented in section 3 are either more scalable or

more in keeping with the DNS and DNSSEC design philosophies than any of the credible

competing designs. Because of it's greater flexibility, we recommend the hierarchical

Trust Authority design from section 3.2. Resolvers using such TAs need to be very clear

about what security policy they are using. Primarily because it allows the greatest chance

for successful validation, a resolver policy of "accept any success" is suggested. To

allow TAs to scale, though, that policy requires that resolvers implement aggressive

negative caching, as described in section 3.3.2.

5.1 Future Work

While this paper has primarily talked about how to use a single TA (or a set of single-

zone TAs) to supplement the trust data in the DNS's main delegation tree, it's conceivable

that multiple entities will operate TAs. Future DNSSEC validators may want to make

provision for multiple TAs. The algorithms described in 3.2.2 should be easily extensible

to handle multiple TAs. Further, more complex algorithms will be made possible: a

resolver may wish to accept a validation only when using data from two out of three TAs

lead to validation. More likely, a validator may want to refrain from treating DNS

answers and bad or bogus unless more than one TA indicates that the zone that data came

from should be signed.

Section 3.2.2 discusses an algorithm for finding a name's "closest encloser" -- the TA

record most closely matching that name. That algorithm assumes that an authoritative

server will only return an answer when it has an exact match and that the only answers

returned that have a different name will be referrals to another zone. Some additional

performance improvement could come from allowing authoritative servers to send the

27

closest enclosing TA record in response to the first TA query (i.e. sending a

example.ta.com. record in response to a query for grand.child.example.ta.com.). We

haven't recommended that behavior for two reasons: first, beacuse the logic described in

section 3.2.2 would still be necessary as a fallback. Second, because it's not known how

resolvers, particularly legacy resolvers, will respond to seeing this form of response. This

sort of perturbation to the DNS protocol has triggered several bugs in widely deployed

resolvers, both new and old. Additional testing will be necessary before such behavior

can be trusted not to cause unpleasant side effects. It should be noted, though, that an

authoritative server would need to return different data if the resolver's policy is "access

any success" than if the policy is "closest encloser trumps". In the latter case, only the

closest enclosing TA record need be sent (along with a proof than no others exist). In the

former case, ALL TA records need to be sent (along with all available proofs than no

others exist). Again, the resolver would still need to have logic for fetching any missing

TA records. Because of this difference, it is strongly recommended at all resolvers

follow the same security policy.

28

6 References

[DNSSECbis-1] Arends, R., Austein, R., Larson, M., Massey, D. and S. Rose, "DNS

Security Introduction and Requirements", work in progress, February

2004.

[DNSSECbis-2] Arends, R., Austein, R., Larson, M., Massey, D. and S. Rose, "Resource

Records for DNS Security Extensions", work in progress, February 2004.

[DNSSECbis-3] Arends, R., Austein, R., Larson, M., Massey, D. and S. Rose, "Protocol

Modifications for the DNS Security Extensions", work in progress,

February 2004.

[IPSECKEY] Richardson, M, "A Method for Storing IPsec Keying Material in DNS"

work in progress, February 2004.

[RFC2929] Eastlake, D., E. Brunner-Williams, and B. Manning, "Domain Name System

(DNS) IANA Considerations", BCP 42, RFC 2929, September 2000.

[RFC2535] Eastlake, D., "Domain Name System Security Extensions", RFC 2535,

March 1999.

[RFC3445] Massey, D. and S. Rose, "Limiting the Scope of the KEY Resource Record

(RR)", RFC 3445, December 2002.

[RFC3658] Gudmundsson, O., "Delegation Signer (DS) Resource Record (RR)", RFC

3658, December 2003.

[RFC3755] Weiler, S., "Legacy Resolver Compatibility for Delegation Signer",

RFC3755, April 2004.

[Rozendaal] Rozendaal, E. "Implementing DNSSEC in NSD", Presentation at RIPE47,

Amsterdam, January 2004.

29

