
05/15/2004

TrustedBSD: Trusted Operating
System Features for BSD
Robert Watson, Research Scientist

Host Intrusion Prevention Research Group

McAfee Research

McAfee Research

05/15/2004 Page 2

Introduction

 Introduction to TrustedBSD feature set
– Background: Trusted Operating Systems

• Feature sets of interest

• Role of assurance

– Evolution of the TrustedBSD Project

– Infrastructure to support security features

• Extended attributes, GEOM, ...

– Security features provided via TrustedBSD/FreeBSD

• ACLs, MAC, Audit, ...

– Experimental work to port feature set to Darwin/Mac OS
X

McAfee Research

05/15/2004 Page 3

Background: Trusted Operating
Systems
 Notions originated in security research and

development in the 1960's and 1970's
– Desire to support trustworthy and secure systems for

military (and later general government, banking, etc)

 Two dimensions of importance:
– Security feature set

– Assurance of correct security functionality

 Specifications play an important role
– 1980's-1990's: “Orange Book”

– 1990's-2000's: NIAP and Common Criteria

McAfee Research

05/15/2004 Page 4

Feature Set: Cx/CAPP

 “Common Access Protection Profile”
 Basic security functionality

– High level of trust in administrator, hardware

– Minimal coverage of network concepts

– Basic notions of users, authentication

– Separation of administrative role

– Discretionary protections via Access Control Lists (ACLs)

– Security event auditing

– Software life cycle process documentation

McAfee Research

05/15/2004 Page 5

Feature Set: Bx/LSPP

 “Labeled Security Protection Profile”
 Building on C2/CAPP

– Add mandatory protection, notions of role

• Typically Biba for integrity, MLS for confidentiality

– Enhanced security event auditing

 Systems frequently also ship with trusted
networking extensions

– CIPSO, MAC integration for IPsec

 Compartmented Mode Workstation (CMW)

McAfee Research

05/15/2004 Page 6

Assurance

 How can you provide assurance of security?
 Assurance arguments critical to trusted

systems
– Documentation of intent, assumptions of system

– Documentation that system architecture addresses intent

– Argument that system is correctly implemented

– Documentation of software development and
maintenance processes

 For lower levels, measured in inches of paper
 For higher levels, development and

architectural processes critical to success

McAfee Research

05/15/2004 Page 7

Evaluation Process: Common Criteria

 Select a target feature set (“protection profile”)
 Select a target assurance level (EALx)
 Contract to an evaluation lab

– Probably also someone to help with evidence generation

 Notes
– Narrow feature sets (cut down PP, context)

– Evaluation process is expensive, but critical to provide
software to some audiences (governments, etc).

– Becoming more important as required by more
consumers

– Interactions with open source beginning to be understood

McAfee Research

05/15/2004 Page 8

Security Infrastructure Features

 Additional infrastructure required
 Problem: cryptographic storage protection

– Solution: extensible storage framework (GEOM)

 Problem: access control lists and MAC require
storage

– Solution: extended attributes (UFS extattr, UFS2)

 Problem: diverse access control approaches
– Solution: centralized access control

McAfee Research

05/15/2004 Page 9

 Mobile computing requires the ability to
“revoke” data on mobile computing devices

– Lowest cost solution is a cryptographic transform

– Requires “insertion” of a transform in the storage stack

 Rather than implement a one-time transform,
provide transformation infrastructure

– GEOM allows “classes” to plug into the storage stack

• Also used for other services (RAID, partitioning, et al.)

– Cleanly separates storage producers and consumers

– Facilities new security R&D for storage

Infrastructure: GEOM

McAfee Research

05/15/2004 Page 10

Infrastructure: Extended Attributes

 New access control models frequently require
new meta-data for file system objects

– Access control lists require storage for list data

– Mandatory access control requires storage for label data

– Prevent work when adding more meta-data

 Extended attributes provide (name, value)
pairs

– Name is a character string; value is 0 or bytes of data

– No semantics for content implied

– Name spaces indicate protection (system, user)

– Can be consumed by the kernel or userspace

McAfee Research

05/15/2004 Page 11

Infrastructure: EAs on UFS1

 First generation implementation
– Doesn't modify on-disk layout – facilitates prototyping

– Allocates “backing files” by attribute name

– Contains array of attribute data indexed by inode #

– Requires explicit administrative configuration

– Administrator-defined bound on max data size

– Space reservation and efficiency are both issues

– Works well for fixed-size attributes

– Concurrency and locality issues for performance

McAfee Research

05/15/2004 Page 12

Infrastructure: EAs on UFS2

 Perform roll of on-disk layout version
– Add additional explicit storage for attributes in new layout

– Data referenced by inode, stored close to inode

– Uses normal UFS fragment/block mechanism, but
prepared for future use of UFS2 pseudo-extents

– Tighter integration with soft updates

 While there, also...
– Bump to 64-bit disk addressing

– New ABIs for system calls, et al

– Other misc. bits and pieces

McAfee Research

05/15/2004 Page 13

Infrastructure:
Centralized Access Control
 Review all kernel access control decisions
 Use explicit monitoring APIs rather than kmem
 Abstract “common” checks

– vnode access control

– Inter-process authorization (visibility, signals, debugging,
...)

 SMPng/KSE credential synchronization model
 Not a security feature “per se”

– However, critical to adding security features

McAfee Research

05/15/2004 Page 14

Security Features

 GBDE: Cryptographic Disk Protection
 POSIX.1e Access Control Lists (ACLs)
 OpenPAM
 NSS
 MAC Framework and policy modules
 SEBSD
 SEDarwin
 Audit

McAfee Research

05/15/2004 Page 15

GBDE: GEOM-Based Disk Encryption

 Storage encryption using key or random key
– Intended to be resilient to cryptographic attack

– Appropriate for use on notebooks, for swap devices, etc.

 Performed at block level, not file system level
 Created using GEOM class; once instance per

encrypted storage device
 Auto-configuring, subject to key availability
 Details covered in GBDE session yesterday.
 Implementation by Poul-Henning Kamp

McAfee Research

05/15/2004 Page 16

POSIX.1e Access Control Lists (ACLs)

 Enhanced “discretionary” access control
– Administrator/owners of objects control object protections

– Extension of permission model permits new entries

• Additional users, additional groups

• Mode compatibility through “mask” entry

 Based on POSIX.1eD17 draft standard
– Specification never finalized for a variety of reasons

 Model selected due to compatibility concerns
– On the whole, API-compatible with IRIX, Linux

– Semantics similar but syntax non-identical to Solaris

McAfee Research

05/15/2004 Page 17

OpenPAM

 Pluggable Authentication Modules (PAM)
 FreeBSD used linux-pam derivative
 Desire for fresh implementation

– More complete integration required

– XSSO standards compliance, Solaris compatibility

– Strong portability goals

– Security audit and review

– More complete set of modules

 OpenPAM integrated into FreeBSD 5.x

McAfee Research

05/15/2004 Page 18

NSS – Name Service Switch

 NSS permits directory services to be plugged
– Similar to PAM for password file, group file, etc

– Allows new directory services to be plugged in as
modules

• LDAP particularly of interest

– Requirement for extensibility so new database types and
databases can be added easily

– Current implementation uses shared libraries

• On-going work to support IPC to NSS daemon for caching,
reduced cost

 Integrated into FreeBSD 5.x

McAfee Research

05/15/2004 Page 19

MAC Framework and Policy Modules

 Addresses two requirements
– Mandatory Access Control (MAC) policies

– Extensible/flexible kernel policy mechanism

 Allows extension of kernel access control
model

– Policies encapsulated in kernel or loadable modules

• Compile-time, boot-time, and run-time extension

– Modules can instrument critical access decisions in
kernel

– Provides common infrastructure, such as labeling, APIs

– Automatic composition of multiple policies

– Many sample policy modules

McAfee Research

05/15/2004 Page 20

Rationale for Security Extensions

 Common FreeBSD deployment scenarios
– Banks, multi-user ISP environments

– Web-hosting cluster, firewalls

– “High-end embedded”

 Many of these scenarios have requirements
poorly addressed by traditional UNIX security

– OS hardening

– Mandatory protection

– Flexible, manageable, scalable protection

McAfee Research

05/15/2004 Page 21

Why a MAC Framework?

 Support required in operating system for new
security services

– Costs of locally maintaining security extensions are high

– Framework offers extensibility so that policies may be
enhanced without changing base operating system

 There does not appear to be one perfect
security model or policy

– Sites may have different security/performance trade-offs

– Sites may have special local requirements

– Third party and research products

McAfee Research

05/15/2004 Page 22

MAC Framework Background

 Extensible security framework
– Policies implemented as modules

– Common policy infrastructure like labeling

– Sample policy modules, such as Biba, MLS, TE,
hardening policies, et al.

– Composes multiple policies if present

– Also provides APIs for label-aware and possibly policy-
agnostic applications

 Shipped in FreeBSD 5.0 to 5.2, 5.2.1

McAfee Research

05/15/2004 Page 23

Kernel MAC Framework

User Process

User Process

User Process

...

S
ys

te
m

 C
al

l I
nt

er
fa

ce
VFS

Socket IPC

Process
Signalling

Pipe IPC

...
M

A
C

 F
ra

m
ew

or
k

mac_biba

mac_bsdextended

...

Sebsd

McAfee Research

05/15/2004 Page 24

Policy Entry Point Invocation
Policy-Agnostic Labeling Abstraction

M
A

C
 F

ra
m

ew
or

k

mac_biba

check file read?

EACCES

Destroy label

Init label

OK

Internalize
label

check relabelfile?

OKrelabel
Destroy label

1
label-1

2
label-2

3
label-3

jail
biba

jail
biba

jail
biba

biba/low

jail.a

biba/high

jail.b

biba/low

McAfee Research

05/15/2004 Page 25

Modifications to FreeBSD to Introduce
MAC Framework
 A variety of architectural cleanups

– Audit and minimize use of privilege

– Centralize inter-process access control

– Centralize discretionary access control for files

– Clean up System V IPC permission functions

– Prefer controlled and explicit export interfaces to kmem

– Combine *cred structures into ucred; adopt td_ucred

– Correct many semantic errors relating to credentials

– Support moves to kernel threading, fine-grained locking,
SMP

McAfee Research

05/15/2004 Page 26

Modifications to FreeBSD to add the
MAC Framework (cont)
 Infrastructure components

– Add support for extended attributes in UFS1; build UFS2

 Actual MAC Framework changes
– Instrument kernel objects for labeling, access control

– Instrument kernel objects for misc. life cycle events

– Create MAC Framework components (policy registration,
composition, label infrastructure, system calls, ...)

– Create sample policy modules

– Provide userspace tools to exercise new system calls

– Modify login mechanisms, user databases, etc.

McAfee Research

05/15/2004 Page 27

List of Labeled Objects

 Processes
– Process credential, process

 File System
– Mountpoint, vnode, devfs directory entries

 IPC
– Pipe IPC, System V IPC (SHM, Sem, Msg) , Posix IPC

 Networking
– Interface, mbuf, socket, Inet PCB, IP fragment queue,

Ipsec, security association

McAfee Research

05/15/2004 Page 28

Integration of MAC Framework
into FreeBSD

Process/
Thread
Support

System Call API/ABIs
Native, Linux, SVR4, OSF/1, PECOFF, ...

Scheduler

Process
Threaded Process

t t t t ...

VFS

UFS
...

GEOM Storage
Framework

Interface
Framework

File Interface

Socket IPC

Network
Protocols

Newbus, Device Drivers

devfs,
specfsPipe

IPCSysV
SHM

Virtual
Memory

SysV
msgq,
sem

McAfee Research

05/15/2004 Page 29

Where Next for the TrustedBSD MAC
Framework
 Continue to research and develop TrustedBSD

MAC Framework on FreeBSD
– Enhanced support for IPsec

– Improve productionability of policy modules

– Continued R&D for SEBSD

– Integrate with Audit functionality

McAfee Research

05/15/2004 Page 30

Sample Policy Modules

 mac_test regression test, stub, null modules
 Traditional labeled MAC policies

– Biba fixed-label integrity, LOMAC floating-label integrity

– Hierarchal and compartmented Multi-Level Security
(MLS)

– SELinux FLASK/TE “SEBSD”

 Hardening policies
– File system “firewall”

– Interface silencing

– Port ACLs

– User partitions

McAfee Research

05/15/2004 Page 31

SEBSD: Security-Enhanced BSD
Port of FLASK/TE from SELinux
 SELinux based on:

– NSA's FLASK architecture

• Developed on FLUX, a Mach/BSD microkernel

• Access control abstraction based on subjects, objects, sids

– Type Enforcement policy language

• Similar to Domain and Type Enforcement (DTE)

• Subjects assigned domains, objects types

• Rule language permits subject methods on objects

• Domain transitions occur on selected binaries

– Policy file determines nature and granularity of policy

McAfee Research

05/15/2004 Page 32

MAC Framework Modifications
Required for SEBSD
 Framework parallel to LSM in construction

– Similarity between LSM and MAC Framework simplify
implementation; differences simplify it further

 Provides stronger label manipulation and
management calls

– Don't need a number of the system call additions
required to run FLASK on Linux

 Removed notion of SID exposed to userspace
since mature APIs for labels already existed

– This approach later adopted in SELinux, also.

McAfee Research

05/15/2004 Page 33

Creating SEBSD Module from
Largely OS-Independent FLASK/TE

 At start
– SELinux tightly

integrated FLASK/TE
into Linux kernel

– Over course of SEBSD
work, similar
transformation was made
with LSM

 MAC Framework
plays similar role to
LSM for SEBSD

FLASK

TE

Linux
Kernel

LSM

FLASK

TE

FreeBSD
Kernel

MAC
Framework

SELinux SEBSD

McAfee Research

05/15/2004 Page 34

Current Status of SEBSD

 Kernel module “sebsd.ko” functional
– Most non-network objects labeled and enforced for most

interesting methods

– File descriptor, privilege adaptations of MAC Framework
complete

 Userspace experimental but usable
– Libsebsd port complete, ports of SELinux userland

programs completed as needed (checkpolicy, newrole,
...)

– Adapted policy allows many applications to run

• Few changes needed for third party applications, mostly
change required for base system components

McAfee Research

05/15/2004 Page 35

SEBSD: Implementation

 Fairly straight forward to port FLASK/TE
– FLASK/TE originally developed on BSD

– Encapsulated FLASK/TE into MAC Framework module

 Some enhancement to MAC Framework
– Requires labeling, access control for file descriptors

– Requires greater policy control over superuser privilege

– Required tighter integration into user space components

 In many ways easier on FreeBSD than Linux
– MAC Framework infrastructure critical (labels, APIs,

tools)

– FreeBSD locking much better defined

McAfee Research

05/15/2004 Page 36

SEDarwin: Security-Enhanced Darwin
Port of MAC Framework, SEBSD
 Currently experimental work

– Ported extended attributes, MAC Framework to XNU

– Ported SEBSD module and simple sample TE policy

– Modified some user space applications

– Explored applying mandatory protections to Mach

– Now porting other policies, improving maturity

 Many lessons learned concerning Darwin
– Build environment, architectural similarities and

differences, HFS+ issues, closed source pieces, working
with Apple, windowing systems, Mach, ...

McAfee Research

05/15/2004 Page 37

Security Event Auditing

 Fine-grained security event auditing
– Create a detailed audit log of security events

• Postmortem

• Intrusion detection

– Required by various security standards

• Including Orange Book, Common Criteria

 Detailed audit of result of many event classes
– Access to controlled objects (files, network, etc)

– Authentication events

– System configuration events

McAfee Research

05/15/2004 Page 38

Implementation Requirements

 Process properties (audit ID, session, ...)
 System calls to set properties on login
 System calls to configure audit support
 Instrument kernel events to generate audit trail
 System calls to submit user audit records
 Modifications to user applications (login, et al)
 Kernel record queue, queue limits, disk drain
 User databases and library
 Applications for printing, parsing, managing

McAfee Research

05/15/2004 Page 39

Audit Implementation

 McAfee Research implemented Audit on Mac
OS X/Darwin platform under contract

– Uses Solaris BSM API, user interfaces, trail format

 Currently porting implementation to FreeBSD
– Subject to code drops, licensing from Apple

 Hard problems to solve, however, include
– How to generate file paths to use in audit records for UFS

– Problems solved in HFS+ due to different name
properties

 Work in progress; 6.x/5.4 time frame

McAfee Research

05/15/2004 Page 40

Conclusion

 TrustedBSD Project active
– Steady stream of features applied to FreeBSD 4.x, 5.x,

and upcoming 6.x branches

– Some features quite mature (GEOM, UFS2, extended
attributes, OpenPAM, NSS, ACLs)

– Other features in the process of maturing (MAC
Framework, MAC policies)

– Others in early development (Audit)

 Information at http://www.TrustedBSD.org/
 Feel free to join lists, post messages, pitch in!

http://www.TrustedBSD.org/

