
CAPP-Compliant Security Event 
Audit System for Mac OS X and 

FreeBSD

Robert N. M. Watson

Security Research
Computer Laboratory

University of Cambridge

March 23, 2006



23 Mar 2006 2

Introduction

● Background
● Common Criteria, CAPP, evaluation
● What is security event audit?
● Audit design and implementation 

considerations
● Differences between UNIX and Mac OS X
● FreeBSD port
● OpenBSM



23 Mar 2006 3

Organizations

● Apple Computer, Inc.
– Tight hardware/software integration, single vendo

● McAfee Research, McAfee, Inc.,
– Computer security research and engineering

● Primarily DoD customers, but some commercial

● SAIC
– Many things, but among them, evaluation lab

● TrustedBSD Project
– Trusted operating system extensions for FreeBSD



23 Mar 2006 4

Trusted Operating Systems

● Notions originated in security research and 
development during 1950's – 1970's
– Trustworthy and security systems for US military

– Later, scope expands

● Two focuses
– Specific security feature sets

– Assurance

● 1980's–1990's “Orange book”
● 1990's–2000's NIAP and Common Criteria (CC)



23 Mar 2006 5

Role of Evaluations

● Security evaluations controversial
– Does the evaluation address real security needs?

– Is the goal more paper or a better product?

– Do we know more after an evaluation?

● Security evaluations are, however, a reality
– Cannot sell to US DoD (and others) without 

evaluation

– Inclusion of many necessary security features has 
been driven by evaluation requirements



23 Mar 2006 6

Common Criteria

● ISO standard and model for security evaluation
– CC defines vocabulary and processes

– Protection Profiles define functional requirements

– Evaluation Assurance Level (EAL) defines 
assurance target

● Two widely used protection profiles for 
operating systems
– CAPP, LSPP

– Other protection profiles for other sorts of products



23 Mar 2006 7

NCSC Orange Book-Derived 
Protection Profiles

Labelled Security
Protection Profile

(LSPP)

Common Access
Protection Profile

(CAPP)

Derived from Orange Book B1

CAPP + Mandatory Access Control (MAC)
Role-Based Access Control (RBAC)
Multi-Level Security (MLS)
Enhanced security event auditing
Typically shipped with labelled networking

Derived from Orange Book C2

Multiple authenticated users
Separation of administrative role
Discretionary access control
Security event auditing
Minimal coverage of network concepts



23 Mar 2006 8

Assurance

● Assurance arguments critical to evaluation
– Documentation of goals

– Documentation of assumptions

– Documentation of system design

– Argument system implementation matches design

– Documentation of process

● Assurance is measured in paper
– For lower EAL, measurements < 1 yardmetre

– For higher EAL, measurements > 1 yardmetre



23 Mar 2006 9

Common Criteria Evaluation

● Five easy steps

1 Select a protection profile, assurance level

2 Write a security target, evaluation evidence

3 Add features implementing missed requirements

4 Write a very large cheque

5 Work with evaluation lab through testing cycle

● Shortcuts
– Evaluate to a cut down protection profile (PR)

– Contract evaluation lab to write your evidence



23 Mar 2006 10

UNIX and CAPP

● Most commercial UNIX systems meet CAPP 
requirements with minor configuration tweaks

● Three common extensions required:
– Enhanced discretionary access control – ACLs

– Security event audit

– Authentication and password policy enforcement

● Of these, audit is the most difficult (expensive) 
to add to a UNIX system



23 Mar 2006 11

What is Security Event Audit?

● Log of security-relevant events
– Secure

– Reliable

– Fine-grained

– Configurable

● A variety of uses including
– Post-mortem analysis

– Intrusion detection

– Live system monitoring, debugging



23 Mar 2006 12

Common Criteria and Audit

● CAPP defines functional requirements
– Audit will provide comprehensive logging of security 

events defined in CAPP and security target

– Reliability and robustness requirements key

● LSPP extends audit to include MAC labelling 
and decision information



23 Mar 2006 13

CAPP Requirements (excerpt)
CAPP Requirements Table
CAPP Category Requirement Description
5.1.1.1 FAU_GEN.1 Audit Data Generation

5.1.1.2 FAU_GEN.1 Audit Data Generation

5.1.2.1 FAU_GEN.2 User Identity Association

5.1.3.1 FAU_SAR.1 Audit Review

5.1.3.2 FAU_SAR.1 Audit Review

5.1.4.1 FAU_SAR.2 Restricted Audit Review

The TSF shall be able to generate an audit record 
of the auditable events listed in column “Event” of 
Table 1 (Auditable Events). This includes all 
auditable events for the basic level of audit, except 
FIA_UID.1's user identity during failures.

The TSF shall record within each audit record at 
least the following information: (a) Data and time of 
the event, type of the event, subject identity, and 
the outcome (success or failure) of the event; (b) 
additional information specified in Table 1.

The TSF shall be able to associate each auditable 
event with the identity of the user that caused the 
event.
The TSF shall provide authorized administrators 
with the capabiity to read all audit information from 
the audit records.
The TSF shall provide the audit records in a 
manner suitable for the user to interpret the 
information.
The TSF shall prohibit all users read access to the 
audit records, excet those users that have been 
granted explicit read-access.



23 Mar 2006 14

Audit Basics

● Audit records describe individual events
– Attributable (to an authenticated user)

– Non-attributable (no authenticated user)

– Selected (configured to be audited)

● Most audit events fall into three classes
– Access control

– Authentication

– Security management

● Audit log files are called “trails”



23 Mar 2006 15

Audit Log Security

● Audit must be non-bypassable
● Right to add records to trail must be controlled
● Setting and viewing the audit configuration 

must be controlled
● Audit review must be controlled, assignable
● UNIX syslog has none of these properties!



23 Mar 2006 16

Audit Reliability

● Reliability is key to audit implementation
– If an event is auditable, selected, and occurs, then 

it must be audited

– If an event is auditable, selected, but cannot be 
audited, it must not occur

● Ability to fail-stop system for predictable loss
● Upper bound on loss in the event of 

unexpected failure (i.e., power loss)
● UNIX syslog can't do this either



23 Mar 2006 17

Mapping CAPP Audit into UNIX

● CAPP does not impose a specific OS structure
– Does require a Trusted Code Base (TCB)

● UNIX structure is layered
– Operating system kernel (TCB)

– Operating system user space (TCB)

– Other operating system user space (user)

● All audit events sourced in TCB
– Authentication events mostly user space

– Access control events mostly kernel space



23 Mar 2006 18

Auditable Events in UNIX

● Access control
– System calls checking for super user privilege

– System calls with file system access control checks
● Including path name lookup!

– Login access control decisions

● Authentication, Account Management
– Password changes, successful authentication, 

failed authentication, user administration

● Audit related events



23 Mar 2006 19

Mapping CAPP Audit into UNIX

● Typical design choices
– Audit event stream managed by kernel

– Most records generated by system calls

– Other records submitted by system applications 
using system call; privilege required

– UNIX DAC permissions protect audit log

– Helper daemon manages audit configuration, 
possibly writes audit stream

– Process state extended with pre-selection masks 
and audit user ID



23 Mar 2006 20

Audit and FreeBSD

● FreeBSD is in every sense, a classic UNIX
● All UNIX design choices on previous slide apply

– Will tell you more in a few minutes



23 Mar 2006 21

Audit and Mac OS X

● Mac OS X is based on a UNIX kernel
– Most UNIX audit design choices apply

– Kernel also offers Mach IPC

● Mac OS X user space relies on extensive IPC
– UNIX processes cross boundaries with setuid

– Mac OS X uses IPC to privileged daemons

● Extend Mach message trailers with audit fields
– Allows privileged daemons to attribute audit events 

to current subject



23 Mar 2006 22

Audit and Mac OS X (cont)

● Mac OS X process tree not traditional UNIX
– UNIX process tree descends from single parent

– In Mac OS X, user applications launched by a 
single privileged process (window server)

● Modification to approach that assumes all audit 
properties can be set at login and then inherited
– Application launch services had to learn about audit



23 Mar 2006 23

Modifications to FreeBSD,
Mac OS X Kernels

● System call entry pre-selects, allocates record
● System call arguments, return values
● System call exit commits record
● Audit record queue implementation
● Audit event trigger mechanism
● Conversion from internal record to BSM
● Audit system calls
● Mach message trailer audit fields (Mac OS X)



23 Mar 2006 24

Modifications to FreeBSD,
Mac OS X User Space

● Audit library
● Audit trail viewer, reduction tool
● /etc/security audit configuration / databases
● Audit daemon to manage trails, triggers
● Set audit context at user login
● Application launch support for audit (Mac OS X)
● Audit in management tools, daemons



23 Mar 2006 25

Sample Audit Control Flow

login uthread

login kthread

audit_worker
kthread

access()

Audit preselect,
possibly assign record

to thread, possibly
wait for queue space

Audit
permission
argument

Audit
pathname
argument

Audit result, preselect,
commit to record queue,

wake up worker

Convert
record
to BSM

Dequeue
audit

record

Commit
to disk

access()
returns



23 Mar 2006 26

BSM APIs and File Formats

● Sun's Basic Security Module (BSM) de facto 
industry standard
– File formats

● Token-oriented audit trail format (almost TLV)
● Audit configuration and databases

– APIs
● Construct, parse, process audit record streams
● Manage audit state, pre-selection model

● Compatibility with many existing libraries and 
tools for free



23 Mar 2006 27

BSM Audit Record Format

Record header

Subject token

Return token

Trailer token

0 or more variable
argument tokens...

(paths, ports, ...)

header,129,1,AUE_OPEN_R,0,Tue Feb 21 00:12:23 2006, 
+ 253 msec
argument,2,0,flags
path,/lib/libc.so.6
attribute,444,root,wheel,16842497,11663267,46706288
subject,-1,root,wheel,root,wheel,319,0,0,0.0.0.0
return,success,6
trailer,129

header,108,1,AUE_CLOSE,0,Tue Feb 21 00:12:23 2006, + 
255 msec
argument,2,0x6,fd
attribute,444,root,wheel,16842497,11663267,46706288
subject,-1,root,wheel,root,wheel,319,0,0,0.0.0.0
return,success,0
trailer,108



23 Mar 2006 28

Thinking About Audit Reliability

● Correspondence between auditable events and 
audit records tricky
– Audit record production is a queue split over several 

system components

– Must bound end-to-end queue size based on 
available storage resources

– Must bound end-to-end queue size based on 
maximum permissible loss

● "Fail-stop" must commit remaining records 
gracefully before stopping



23 Mar 2006 29

Audit Queuing

Per-
thread
queue

User
processes Kernel

Stable
store

Audit
subsystem

queue

File system,
Buffer cache



23 Mar 2006 30

Audit Selection

● Potential for audit record volume huge
– Terabytes/hour on busy, fully audited system

● Two key points for audit record selection
– Audit pre-selection to limit audit records created

– Audit post-selection, or reduction, to eliminate 
undesired records after creation

● Mac OS X and FreeBSD support both models
– Administrator can apply filters to users at login time

– Administrator can use tools to reduce trails later



23 Mar 2006 31

Audit Configuration: Pre-Selection

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
0x00000080:pc:process
0x00000100:nt:network
...

0:AUE_NULL:indir system call:no
1:AUE_EXIT:exit(2):pc
2:AUE_FORK:fork(2):pc
3:AUE_OPEN:open(2) - attr only:fa
4:AUE_CREAT:creat(2):fc
5:AUE_LINK:link(2):fc
6:AUE_UNLINK:unlink(2):fd
7:AUE_EXEC:exec(2):pc,ex
8:AUE_CHDIR:chdir(2):pc
...

root:lo:no
audit:lo:no
test:all:no
www:fr,nt,ip:no
...

● Over 350 event types
– Most of them 

meaningless 
individually

● Each event assigned 
to one or more 
classes

● Class masks 
assigned to users



23 Mar 2006 32

FreeBSD Port

● FreeBSD Operating System
– BSD-licensed 4.4BSDlite2 derivative OS

– Widely used in high-end embedded, networking, 
ISP, server spaces.

– One of the source code bases for Mac OS X

● More classic UNIX operating system
● Common code base makes it an easy target
● Currently present in FreeBSD 7.x development 

tree, will be merged as of 6.2 release



23 Mar 2006 33

Changes Made Porting to FreeBSD

● Endian-independent implementation
– Also now important on Mac OS X

● Discard Mac OS X mach trailer support
● Add 64-bit token support

– Also now important on Mac OS X

● Significant clean-up, debugging, documentation
● Largely different user space integration
● Introduce audit pipes



23 Mar 2006 34

process

process

Audit Pipes

● Historically, audit for 
post-mortem analysis

● Today, for intrusion 
detection / monitoring

● Audit pipes provide 
live record feed
– Lossy queue

– Discrete audit records 

– Independent streams

Audit
subsystem

queue

File system,
Buffer cache

Audit pipe
queue(s)



23 Mar 2006 35

OpenBSM

● BSD-licensed BSM library, tools, docs
● Portable across many platforms
● Implements Sun BSM with some extensions
● Foundation for FreeBSD, future Mac OS X use
● http://www.OpenBSM.org/



23 Mar 2006 36

Conclusion

● Security event auditing is critical to successful 
security evaluation
– Some argue audit is a critical security feature

● Complex reliability requirements
● Complex security requirements
● Open source common to FreeBSD, Mac OS X

– http://www.TrustedBSD.org/, 
http://www.OpenBSM.org/

● API/file format compatibility with Solaris

http://www.TrustedBSD.org/
http://www.OpenBSM.org/

