
Introduction to Multithreading and Multiprocessing
in the FreeBSD SMPng Network Stack

Robert N. M. Watson
rwatson@FreeBSD.org

Computer Laboratory
University of Cambridge

Abstract

The FreeBSD SMPng Project has spent the past five
years redesigning and reimplementing SMP support
for the FreeBSD operating system, moving from a
Giant-locked kernel to a fine-grained locking imple-
mentation with greater kernel threading and paral-
lelism. This paper introduces the FreeBSD SMPng
Project, its architectural goals and implementation ap-
proach. It then explores the impact of SMPng on the
FreeBSD network stack, including strategies for inte-
grating SMP support into the network stack, locking
approaches, optimizations, and challenges.

1 Introduction

The FreeBSD operating system [4] has a long-standing
reputation as providing both high performance net-
work facilities and high levels of stability, especially
under high load. The FreeBSD kernel has supported
multiprocessing systems since FreeBSD 3.x; how-
ever, this support was radically changed for FreeBSD
5.x and later revisions as a result of the SMPng
Project [1] [6] [7] [8].

This paper provides an introduction to multiprocess-
ing, multiprocessor operating systems, the FreeBSD
SMPng Project, and the implications of SMPng on ker-
nel architecture. It then introduces the FreeBSD net-
work stack, and discusses design choices and trade-
offs in applying SMPng approaches to the network
stack. Collectively, the adaption of the network stack
to the new SMP architecture is referred to as the Net-
perf Project [5].

2 Introduction to Multiprocessors and
Multiprocessing Operating Systems

The fundamental goal of multiprocessing is the im-
provement of performance through the introduction
of additional processors. This performance improve-
ment is measured in terms of “speedup”, which re-
lates changes in performance on a workload to the

number of CPUs available to perform the work. Ide-
ally, speedup is greater than 1, indicating that as CPUs
are added to the configuration, performance on the
workload improves. However, due to the complexities
of concurrency, properties of workload, limitations of
software (application and system), and limitations of
hardware, accomplishing useful speedup is often chal-
lenging despite the availability of additional computa-
tional resources. In fact, a significant challenge is to
prevent the degradation of performance for workloads
that cannot benefit from additional parallelism.

Architectural changes relating to multiprocessing
are fraught with trade-offs, which are best illustrated
through an example. Figure 1 shows performance re-
sults from the Supersmack MySQL benchmark [2] on
a quad-processor AMD64 system, showing predicted
and measured transactions per second in a variety of
kernel configurations:

Figure 1: Speedup as Processors Increase for MySQL
Select Query Micro-Benchmark

A number of observations can be made from these
performance results:

• There is a small but observable decrease in per-
formance in moving from a UP kernel to an SMP



kernel, even with the SMP kernel compiled to run
only on a single CPU. This is due to the increased
overhead of locked instructions required for SMP
operation; the degree to which this is significant
depends on the workload.

• An “optimal” performance figure in these results
is extrapolated by predicting linear improvement
from the single-processor case: i.e., with the ad-
dition of each processor, we predict an improve-
ment in performance based on each new CPU ac-
complishing the amount of work performed in the
single processor case. This would require that the
hardware and OS support increased parallelism
without increased overhead, that the work per-
formed by the application be improved linearly
through added parallelism, and that the applica-
tion itself be implemented to use available par-
allelism effectively. As suggested by the graph,
speedups of less than 1 are quite common.

• The graph also includes a predicted speedup
based on linear improvement at the rate measured
when going from a one-CPU to a two-CPU con-
figuration. In the graph, the move from two to
three processors accomplishes close to predicted;
however, when going from three to four proces-
sors, a marked decrease in performance occurs.
One possible source of reduced performance is
the saturation of resources shared by all proces-
sors, such as bus or memory resources. Another
possible source of reduced performance is in ap-
plication and operating system structure: that cer-
tain costs increase as the number of processors in-
creases, such as TLB invalidation IPIs and data
structure sizes, resulting in increased overhead as
CPUs are added.

This benchmark illustrates a number of important
principles, the most important of which is that multi-
processing is a complex tool that can hurt as much as it
helps. Improving performance through parallelism re-
quires awareness and proper utilization of parallelism
at all layers of the system and application stack, as well
as careful attention to the overheads of introducing par-
allelism.

2.1 What do we want from MP systems?

Multithreading and multiprocessing often requires sig-
nificant changes in programming model in order to be
used effectively. However, where these changes are ex-
posed is an important consideration: the SMP model
selected in earlier FreeBSD releases was selected on
the basis of minimal changes to the current kernel
model, and minimal complexity. Adopting new struc-
tures and programming approaches offers performance
benefits with greater software changes. The same de-
sign choice applies to the APIs exposed to user applica-

tions: in both earlier work on FreeBSD’s SMP imple-
mentation and the more recent SMPng work, the goal
has been to maintain standard UNIX APIs and services
for applications, rather than introducing entirely new
application programming models.

In particular, the design choice has been made to of-
fer a Single System Image (SSI), in which user pro-
cesses are offered services consistent with executing
on a single UNIX system. This design choice is of-
ten weakened in the creation of clustered computing
systems with slower interconnects, and requires sig-
nificant application adaptation. For the purposes of
the SMPng Project, the goal has been to minimize
the requirement for application modification while of-
fering improved performance. In FreeBSD 5.x and
later, multiprocessor parallelism is exposed to applica-
tions through the use of multiple processes or multiple
threads.

2.2 What is shared in an MP System?

The principle behind current multiprocessing systems
is that computations requiring large amounts of CPU
resources often have data dependencies that make per-
forming the computation with easy sharing between
parts of the computation cost effective. Typical alterna-
tives to multiprocessing in SMP systems include large
scale cluster systems, in which computations are per-
formed in parallel under the assumption that a com-
putation can be broken up into many relatively in-
dependent parts. As such, multiprocessor computers
are about providing facilities for the rapid sharing of
data between parts of a computation, and are typically
structured around shared memory and I/O channels.

Shared Not Shared

System memory CPU (register context,
PCI buses TLB, on-CPU cache, ...)

I/O channels Local APIC timer
... ...

This model is complicated by several sources of
asymmetry. For example, recent Intel systems make
use of Hyper-Threading (HTT), in which logical cores
share a single physical core, including some compu-
tation resources and caches. Another source of asym-
metry has to do with CPUs having inconsistent perfor-
mance in accessing regions of system memory.

2.3 Symmetric Memory Access

The term “symmetric” in Symmetric Multiprocessing
(SMP) refers to the uniformity of performance for
memory access across CPUs. In SMP systems, all
CPUs are able to access all available memory with
roughly consistent performance. CPUs may maintain
local caches, but when servicing a cache miss, no piece
of memory is particularly favorable to access over any
other piece of memory. Whether or not memory access



is symmetric is primarily a property of memory bus ar-
chitecture: memory may be physically or topologically
closer to one CPU than another.

Environments in which uniform memory access is
not present are referred to as Non-Uniform Memory
Access (NUMA) architectures. NUMA architectures
become necessary as the number of processors in-
creases beyond the capacity that a simple memory bus,
such as a crossbar, can handle, or when the speed of
the memory bus becomes a point of significant perfor-
mance contention due to the increase in CPUs outstep-
ping the performance of the memory that drives them.
Strategies for making effective use of NUMA are nec-
essarily more refined, as making appropriate use of
memory topology is difficult.

Traditional two, four, and even eight processor Intel-
based hardware has been almost entirely SMP-based.
Until relatively recently, all low-end server and desk-
top systems were SMP, and NUMA was largely found
in high-end multiprocessing systems, such as super-
computers. However, with the introduction of the
AMD64 hardware platform, NUMA multiprocessor
systems are now available on the desktop and server.

2.4 Inter-Processor Communication

As suggested earlier, communication between proces-
sors in multiprocessing systems is often based on the
use of shared memory between those processors. For
threaded applications, this may mean memory shared
between threads executing on different CPUs; for other
applications, it may mean explicitly set up shared
memory regions or shared memory used to implement
message passing. Issues of memory architecture, and
in particular, memory consistency and cache behavior,
are key to both correctness and performance in multi-
processing systems. Significant variations exist in how
CPU and system architectures handle the ordering of
memory write-back and cache consistency.

Also important in multiprocessor systems is the
inter-process interrupt (IPI), which allows CPUs to
generate notifications to other CPUs, such as to notify
another CPU of the need to invalidate TLB entries for a
shared region, or to request termination, signalling, or
rescheduling of a thread executing on the remote CPU.

3 SMPng

Support for Symmetric Multi-Processing (SMP) has
been a compile-time option for the FreeBSD kernel
since FreeBSD 3.x. The pre-SMPng implementation
is based on a single Giant lock that protects the entire
kernel. This approach exposes parallelism to user ap-
plications, but does not require significant adaptation
of the kernel to the multiprocessor environment as the
kernel runs only on a single CPU at a time.

The Giant lock approach offers relative simplicity of
implementation, as it maintains (with minimal modifi-

cation) the synchronization model present in the uni-
processor kernel which is concerned largely with syn-
chronizing between the kernel and interrupts operat-
ing on the same CPU. This permits user applications to
exploit parallism to improve performance, but only in
circumstances where the benefits of application paral-
lelism outweight the costs of multiprocessor overhead,
such as cache and lock contention.

The FreeBSD SMPng Project, begun in June, 2000,
has been a long-running development project to mod-
ify the underlying kernel architecture to support in-
creased threading and substitute a series of more fine-
grained data locks for the single Giant lock. The goal
of this work is to improve the scalability of the ker-
nel on multiprocessor systems by reducing contention
on the Giant lock, resulting in improved performance
through kernel parallelism.

The first release of a kernel using the new kernel ar-
chitecture was FreeBSD 5.0 which offered the removal
of the Giant lock from a number of infrastructural
components of the kernel as well as some IPC prim-
itives. Successive FreeBSD 5.x releases removed Gi-
ant from additional parts of the kernel such as the net-
work stack, device drivers, and the majority of remain-
ing IPC primitives. The recently released FreeBSD 6.0
also removes Giant from the UFS file system and re-
fines the SMPng architecture resulting in significantly
improved performance.

SMPng was originally targetted solely at SMP
class systems, but with the increased relevance of
NUMA systems, investigation of less symmetric mem-
ory architectures has become more important for the
FreeBSD SMPng Project. Figures 2 and 3 illustrate
prototypical Quad Xeon (SMP) and Quad AMD64
(NUMA) hardware layouts relevant to the FreeBSD
SMPng Project. Figures 4 and 5 illustrate Graphical
Processing Unit (GPU) and cluster architectures not
considered as part of this work.

Figure 2: SMP Architecture: Quad-Processor Intel
Xeon

3.1 Giant Locked Kernels

Support for multiprocessing in operating systems is ei-
ther designed in from inception or retrofitted into an
existing non-multiprocessing kernel. In the case of



Figure 3: NUMA Architecture: Quad-Processor
AMD64

Figure 4: GPU Architecture: External Graphics Pro-
cessor

most UNIX systems, multiprocessing support has been
an after-thought, although the degree of redesign and
reimplementation has varied significantly by product
and version. The level of change has varied from low
levels of change (using a Giant lock to maintain single-
CPU synchronization properties and hence single-CPU
kernel architecture), to complete reimplementation of
the operating system based on a Mach microkernel
and/or message passing.

The most straight forward approach to introducing
multiprocessing in a uniprocessor operating system
without performing a significant rewrite of the system
is the Giant lock kernel approach. This approach main-
tains the property that most kernel synchronization oc-
curs between the “top” and “bottom” halves – i.e., be-
tween system call driven operation and device driver
interrupt handlers, and can be synchronized using crit-
ical sections or interrupt protection levels. In a Giant
lock kernel, a single spinlock is placed around the en-
tire kernel, in essence restoring the assumption that the
kernel will execute on a single processor.

The FreeBSD 3.x and 4.x kernel series make use of a
Giant spinlock which ensures mutual exclusion when-
ever the kernel is running. While the approach is sim-
ple, there are some important details: when a process
attempts to enter the kernel, even the process sched-
uler, it must acquire the Giant lock. This results in lock
contention when more than one processor tries to enter
the kernel at a time (a common occurence with kernel-
intensive workloads, such as network- or storage- cen-
tric loads common on FreeBSD). In the FreeBSD 4.x
kernel, interrupts are able to preempt running kernel
code. However, if an interrupt arrives on a CPU while
the kernel is running on another CPU, it must be for-

Figure 5: Cluster Architecture: Non-Uniform Memory
via Complex Interconnect

warded to the CPU where the kernel is running using
an inter-processor interrupt (IPI).

3.2 Giant Contention

Figure 6: Impact of the Contention of a Giant Lock on
Socket IPC

On systems with small numbers of CPUs, Giant
Lock kernel contention is primarily visible when the
workload includes large volumes of network traffic,
inter-process communication (IPC), and file system ac-
tivity. These are workloads in which the kernel must
perform a significant amount of computation, resulting
in increased delays and wasted CPU resources as other
CPUs wait to enter the kernel, not to mention a failure
to use available CPU resources to perform kernel work
in parallel. On systems with larger numbers of CPUs,
even relatively kernel non-intensive workloads can ex-
perience significant contention on the kernel lock, re-
sulting in rapidly reduced scalability as the number of
CPUs increases.

3.3 Finer Grained Locking

The primary goal of the SMPng Project has been to im-
prove kernel performance on SMP systems by replac-
ing the single Giant kernel lock with a series of smaller
locks, each with more limited scope. This allows the
kernel to usefully execute in parallel on multiple CPUs,
potentially allowing more effective use of available



Figure 7: Reduced Lock Contention with Finer
Grained Locking

CPUs by the kernel on multiprocessor systems. This
also has the added benefit of avoiding wasting CPU as
a result of Giant lock contention. This goal requires
that the “interrupt level” synchronization model be re-
placed with one oriented around parallelism, not just
preemption, resulting in a number of significant kernel
architecture changes. For example, as disabling inter-
rupts on a CPU will no longer prevent interrupt code
from executing at the same time as system call code,
interrupts must now make use of locks to synchronize
with the remainder of the kernel. This in turn leads to
a decision to execute interrupt handlers in full thread
contexts (interrupt threads or ithreads).

This strategy has a number of serious risks:

• The new synchronization approaches must be
more mature than the Giant lock approach, as in-
troducing additional locks increases the risk of
deadlocks. They must also address issues relat-
ing to concurrency and locking, such as priority
inversion.

• Kernel synchronization must take into increased
consideration the memory ordering properties of
the hardware, as it has become a true multi-
threaded program.

• Inter-processor synchronization typically relies
on atomic operations and locked bus operations,
which are expensive to perform; by adding addi-
tional locking requirements, overhead can add up
quickly.

• Race conditions previously visible in the kernel
only under high memory pressure are now far
more likely to occur.

On the other hand, the architectural goals also have
a number of significant benefits:

• In adopting synchronization primitives similar to
those exposed by user threading libraries, such as

mutexes and condition variables, developers fa-
miliar with process threading will be able to get
started quickly with the kernel synchronization
environment.

• By moving from a model with implicit synchro-
nization properties (automatic acquisition and
dropping of Giant) in 3.x/4.x to a model of ex-
plicit synchronization, the opportunity is provided
for introducing much stronger assertions.

• Adopting a more threaded architecture, such as
through the use of ithreads, increases the opportu-
nities for parallelism in the kernel, allowing ker-
nel computation to make better use of CPU re-
sources.

The new SMPng kernel architecture facilitates the
use of parallelism in the kernel, including the creation
of multiprocessor data pipelines. By adopting an iter-
ative approach to development, removing the depen-
dency for Giant gradually over time, the system was
left open to other development work continuing as the
SMP implementation was improved.

The next few sections document the general imple-
mentation strategy followed during the SMPng Project,
taking a “First make it work, then make it fast” strat-
egy:

3.4 SMP Primitives

The first step in the SMPng Project was to introduce
new locking primitives capable of handling more ma-
ture notions of synchronization, such as priority prop-
agation to avoid priority inversion, and advanced lock
monitoring and debugging facilities.

3.5 Scheduler Lock

Efforts to decompose the Giant lock typically begin
with breaking out the scheduler lock from Giant, so
that code executing without Giant will be able to make
use of synchronization primitive that interact with the
scheduler. The availability of scheduling facilities
is fundamental to the implementation of most ker-
nel services, as most kernel services rely on the the
tsleep() and wakeup() mechanisms to manage
long-running events.

Simultaneously, scheduler adaptations to improve
scheduling on multiprocessor systems can be consid-
ered: IPI’s between CPUs to allow the scheduler to
communicate explicitly with the kernel running on
other processors, scheduler affinity, per-CPU scheduler
queues, etc. A variety of such techniques have been in-
troduced via modifications to the existing 4BSD sched-
uler, and in a new MP-oriented scheduler, ULE [13].



3.6 Interrupt Threads

Next, interrupt handlers are moved into ithreads, al-
lowing them to execute as normal kernel threads on
various CPUs and use of kernel synchronization facil-
ities. This has the added benefit that interrupt handlers
now gain access to many more kernel service APIs,
which previously often could not be invoked from in-
terrupt context.

3.7 Infratructure Dependencies

With basic services such as synchronization and
scheduling available without the Giant lock, additional
important dependencies are then locked down. Among
these are the kernel memory allocator and event timers.
This includes both the general memory allocator and
specific allocators such as the Mbuf allocator. In
FreeBSD 6.x, a single Universal Memory Allocator
(UMA) is used to allocate most system memory, rather
than using a separate memory allocator for the network
stack [12]. This allows the network stack to take ad-
vantage of the slab allocation and per-CPU cache fa-
cilities of UMA, make use of uniform memory statis-
tics, and interact with global notions of kernel memory
pressure.

3.8 Data-Based Locking

In most subsystems, data-based locking is used, com-
bining locks and reference counts to protect the in-
tegrity of major data structures. Generally, we have
started with coarser-grained locking to avoid introduc-
ing overhead without first determining that finer gran-
ularity helps with parallelism. Typically, the Virtual
Memory system will be an early target as there is al-
most constant interaction between processes and vir-
tual memory due to the need for multiprocessor op-
eration to invalidate TLBs across processors. In this
stage, locking will be applied based on data structures
in a relatively naive fashion, in order to provide a first
cut of Giant-free operation that can then be refined.

3.9 Slide Giant off Gradually

As Giant becomes unnecessary for subsystems or com-
ponents and all of their dependencies, remove the Gi-
ant lock from covering those paths. This has the effect
of reducing general contention on Giant, improving the
performance of components still under the Giant lock.

3.10 Synchronization Refinment

Drive refinement of locking based on lock contention
vs. lock overhead. Make use of facilities such as mutex
profiling and hardware performance counters.

When balancing overhead and contention, there are
a number of strategies that can be used. For exam-
ple, replicating data structures across CPUs can pre-

vent contention on locks, if the cost of maintaining
replication is lower than the overhead the contention
would cause. Statistics structures are a prime start-
ing point, as they are frequently modified, so reduc-
ing writing to the same memory lines will avoid cache
invalidations. Statistics can then be coalesced for pre-
sentation to the user: this approach is used for a variety
of memory allocator statistics.

Likewise, synchronization with data structures ac-
cessed only from a specific CPU can often be per-
formed using critical sections, which see lower over-
head as they need only prevent preemption, not against
parallelism. Another example of this approach is used
in the UMA memory allocator: in 5.x, per-CPU caches
are protected with mutexes due to accesses to the
cache from other CPUs during certain operations. In
FreeBSD 6.x, per-CPU caches are protected using crit-
ical sections, avoiding cross-CPU synchronization for
per-CPU access.

Operating system literature documents a broad
range of strategies for inter-CPU synchronization and
data structure management, including lockless queues
and Read-Copy-Update (RCU). As hardware architec-
tures vary in both performance and semantics, opti-
mization approaches may be specific to hardware con-
figurations.

4 FreeBSD Network Stack

Having reviewed the FreeBSD SMPng kernel archi-
tecture, we will now explore how this architecture
is implemented in the FreeBSD network stack. The
FreeBSD network stack is one of the most complex
components of the BSD kernel, consisting of over
400,000 lines of code excluding distributed file sys-
tems and device drivers, also large subsystems.

The network stack includes a number of service
abstractions, such as network interfaces, communica-
tions sockets, event dispatch, remote procedure calls
(RPCs), a protocol-independent route table, and user
event models. Of particular importance is that data
flows rapidly and continuously across many layers
of abstraction and implementation, requiring careful
consideration of the interactions between components.
These software layers of abstraction often, but not al-
ways, map to layers in protocol construction.

4.1 Introduction to the Network Stack

The network stack contains many large and complex
components:

• “mbuf” memory allocator

• Network interface abstraction, including a num-
ber of queueing discplines

• Device drivers implementing network interfaces



• Protocol-independent routing and user event
model

• Link layer protocols – Ethernet, FDDI, SLIP, PPP,
ATM, etc.

• Network layer protocols – UNIX Do-
main Sockets, IPv4, IPv6, IPSEC, IPX,
EtherTalk/AppleTalk, etc.

• Socket and socket buffer IPC primitives

• Netgraph extension framework

• Many netgraph nodes implementing a broad
range of services

Figure 8: FreeBSD Network Stack: Common
Dataflow

4.2 Network Stack Concerns

Introducing parallelism and preemption introduces a
number of additional concerns:

• Per-packet costs: network stacks may process
millions of packets per second – small costs add
up quickly if per-packet.

• Ordering: packet ordering must be maintained
with respect to flow, as protocols such as TCP are
very sensitive to minor misordering.

• Optimizations may conflict: optimizing for la-
tency may damage throughput, or optimizing for
local data transfer may damage routing perfor-
mance.

• When using locking, ordering is important – lock
order prevents deadlock, but passage through lay-
ers in the network stack is often bi-directional.

• Some amount of parallelism is available by virtue
of the current network stack architecture – intro-
ducing new parallelism is necessary in order to
improve utilization of MP resources, but depends

on introducing additional threads, which can in-
crease overhead.

These concerns are discussed in detail as the locking
strategy is described.

4.3 Locking Strategy

The SMPng locking strategy for the network stack
generally revolves around data-based locking. Using
this strategy involves identifying objects and assigning
locks to them; the granularity of locking is important as
each lock operation introduces overhead. Useful rules
of thumb include:

• Don’t use finer-grained locking than is required
by the UNIX API: for example, parallel send and
receive on the same socket has benefit, but paral-
lel send on a stream socket has poorly defined se-
mantics, so not permitting parallelism can avoid
unnecessarily complexity.

• Lock references to in-flight packets, not packets
themselves. For example, lock queues of packets
used to hand off between threads, but use only
simple pointe references within a thread.

• Use optimistic concurrency techniques to avoid
additional lock overhead – i.e., where it is safe,
test a value that can be read atomically without a
lock, then only acquire the lock if work is required
that may have stronger consistency requirements.

• Avoid operations that may sleep, which can result
in multiple acquires of mutexes, as well as un-
winding of locks. In general, the network stack is
able to tolerate failures through packet loss under
low memory situations, so take advantage of this
property to lower overhead.

Also important is consideration of layering: as ob-
jects may be represented at different layers in the stack
by different data structures, decisions must be made
both with respect to whether layers share locks, and if
they don’t share locks, what order locks may be ac-
quired in. Control flow moves both “up” and “down”
the stack, as packets are processed in both input and
output paths, meaning that if locks are simply acquired
as processing occurs, lock order cycles will be in-
trouced as processing occurs in two directions.

The following general strategies have been adopted
in the first pass implementation of fine-grained locking
for the network stack:

• Low level facilities, such as network memory al-
location, route event notification, packet queues,
and dispatch queues, generally have leaf locks so
that they can be called from any level of the stack
including device drivers.



• Protocol locks generally fall before device driver
locks in the lock order, so that device drivers may
be invoked without releasing stack locks.

• Protocol locks generally fall before socket locks
in the lock order, so that protocols can interact
with sockets without releasing protocol locks.

Just as asynchronous packet dispatch to the netisr in
earlier BSD network stacks allows avoiding of layer re-
cursion and reentrance, it can also be used to avoid lock
order issues with an MPSAFE network stack. This
technique is used, for example, to avoid recursing into
socket buffer code when a routing event notification
occurs as the result of a socket event, and prevents
deadlock by eliminating the “hold and wait” part of
the deadlock recipe. The netisr will processed queued
routing socket events asynchonously, delivering them
to waiting sockets.

4.4 Global Locks

Global locks are used in two circumstances: where
global data structures are referenced, or where data
structures are accessed sufficiently infrequently that
coalescing locks does not increase contention. The fol-
lowing global locks are a sampling of those added to
the network stack to protect global data structures:

Lock Description

ifnet lock Global network interface
list

bpf mtx Global BPF descriptor list
bridge list mtx Global bridge configuration
if clonersmtx Cloning network interface

data
disc mtx, faith mtx Synthetic interface lists
gif mtx, gremtx,
lo mtx
ppp softc list mtx
stf mtx, tapmtx,
tun mtx, ifv mtx
pfil global lock Packet filter registration
rawcbmtx, Per-protocol control block
ddp list mtx, lists
igmp mtx, tcbinfo mtx,
udbinfo mtx
ipxpcb list mtx
natmmtx, rtsockmtx
hch mtx TCP host cache
ipqlock, ip6qlock IPv4 and IPv6 fragment

queues
aarptabmtx, nd6mtx Link layer address

resolution
in multi mtx IPv4 multicast address

lists
mfc mtx, vif mt IPv4 multicast routing
mroutermtx
sptreelock, sahtreelock IPSEC
regtreelock, acqlock
spacqlock

The following is a sampling of locks have been
added to data structures allocated dynamically in the
network stack:

Structure Field Description

ifnet if addrmtx Interface address lists
if afdatamtx Network protocol data
if snd.ifq mtx Interface send queue

bpf d bd mtx BPF descriptor
bpf if bif mtx BPF interface attachment
ifaddr ifa mtx Interface address

so rcv.sbmtx Socket, socket receive
buffer

socket so snd.sbmtx Socket send buffer
ng queue q mtx Netgraph node queue
ddpcb ddp mtx netatalk PCB
inpcb inp mtx netinet PCB
ipxpcb ipxp mtx netipx PCB

4.5 Network Stack Parallelism

Parallelism in the FreeBSD kernel is expressed in
terms of threads, as they represent both execution and
scheduling contexts. In order for one task to occur



in parallel with another task, it must be performed
in a different thread from that task. In order for the
FreeBSD kernel to make effective use of multiprocess-
ing, work must therefore occur in multiple threads.

A fair amount of parallelism in the network stack is
simply from conversion of the existing BSD network
stack model to the SMPng architecture:

• Each user thread has an assigned kernel thread for
the duration of a system call or fault, which per-
forms work directly associated with the system
call or fault. In the transmit direction, the user
thread is responsible for executing socket, proto-
col, and interface portions of the transmit code,
which includes the cost of copying data in and
out of user space. In the receive direction, the
user thread is responsible for primarily for exe-
cuting the socket code, along with copying data in
and out of user space; under some circumstances,
calls into the protocol and interface layers may
also occur.

• Each interrupt request (IRQ) is assigned its own
ithread, which is used to execute the handlers of
interrupt sources signaled by that interrupt. As
long as devices are assigned different interrupts,
their handlers can execute in parallel. By default,
this will include execution of the link layer inter-
face code, but a dispatch to the netisr thread for
higher stack layers.

• A number of kernel tasks are performed by shared
or assigned worker threads, such as callouts and
timers running from a shared callout thread, sev-
eral task queue processing threads for various
subsystems, and the netisr thread in the network
stack, which is primarily responsible for the pro-
tocol layer processing of in-bound packets.

While multithreading is required in order to experi-
ence parallelism, multithreading also comes with sig-
nificant costs, including:

• Cost of context switching, which may include the
cost of cache flushes when a thread migrates from
one CPU to another and the cost of entering the
scheduler.

• Cost of synchronizing access to data between
threads: typically, a locked or otherwise synchro-
nized data structure or work queue.

Figure 9 illustrates the UDP send path, and possible
parallelism between the user thread sending down the
stack layers, and ithread receiving acknowledgements
from the network stack in order to recycle packet mem-
ory.

Figure 10 illustrates the UDP receive path, and pos-
sible parallelism between the user thread interacting
with the socket layer, netisr processing the IP and UDP
layers, and the ithread receiving packets from the net-
work interface and processing the link layer.

Figure 9: Parallelism in the UDP send path

Figure 10: Parallelism in the UDP receive path

5 MP Programming Challenges

Multiprocessing is intended to improve performance
by introducing greater CPU resources. However, un-
like a number of other hardware-based performance
improvements, such as increasing clock speed or cache
size, multiprocessor programming requires fundamen-
tal changes in programming model. In this section, we
consider two important concerns in multiprocessing
and multithreading programming and their relationship
to the network stack: deadlock, and event serialization.

5.1 Deadlock

Deadlock is a principal concern of systems with syn-
chronous waiting for ownership of locks on objects.
Deadlocks occur when two or more simultaneous
threads of execution (typically kernel threads) meet the
following four conditions:

• Attempt to simultaneously access more than one
resource which can be owned, but not shared (mu-
tual exclusion).

• Hold and wait: threads acquire and hold resources
in an order.



• No preemption: once acquired, a resource cannot
be preempted without agreement of the thread.

• Circular wait: threads acquire and attempt to ac-
quire resources such that a cycle is formed, result-
ing in indefinite wait.

The above description is intentionally phrased in
terms of resources rather than locks, as deadlock can
occur in more general circumstances. For example,
low memory deadlock is another type of widely ex-
perienced deadlock.

Figure 11: Deadlock: The Deadly Embrace

There is extensive research literature on deadlock
avoidance, detection, and management; however, one
of the most straight forward and easiest ways to avoid
deadlock is simply to follow a strict lock order. Lock
orders indicate that, whenever any two locks can be ac-
quired as the same time, they will always be acquired
in the same order. This breaks lock order cycles, and
thus prevents deadlock, and is a widely used technique.

In order to assist in documenting lock orders and
prevent cycles, BSDI created WITNESS, a run-time
lock order verifier, which was refined by the FreeBSD
Project to support additional lock types and assertion
types. WITNESS can be used as both a tool to doc-
ument a specification for lock interaction through a
hard-coded lock order list, and to dynamically dis-
cover lock order relationships through run-time mon-
itoring. WITNESS maintains a graph of lock acqui-
sition orders, and provides run-time warnings (along
with stack traces and other debugging information),
when declared or discovered lock orders are directly
or indirectly violated.

WITNESS and other lock-related invariants also de-
tect and report a variety of other lock usage, such as
acquiring sleepable locks while holding mutexes or in
critical sections, or kernel threads returning to user
space while holding locks.

FreeBSD also makes use of other deadlock avoid-
ance techniques, including the use of optimistic con-
currency techniques in which attempts are made to ac-
quire locks in the wrong order, and then if this would

Figure 12: Lock order verification with WITNESS:
Cycles in the lock graph are detected and reported us-
ing graph algorithms.

result in a deadlock, falling back on the defined or-
der. Another technique used in the kernel is the use of
guard locks, acquired before acquiring locks on multi-
ple objects with no defined lock order between them.
By serializing attempts at simultaneous acquire behind
a lock, the lock order of the objects becomes defined
only when they are acquired at once, and no conflict-
ing lock order can be simultenously defined, prevent-
ing deadlock.

5.2 Event Serialization

In a singlethreaded programming environment, the or-
der of events is largely a property of programmed or-
der, so maintaining the order associated with a data
structure or the processing of data is essentially a prob-
lem of ordering of the program. In a multithreaded
programming environment, concurrency in code exe-
cution means that parallel threads of execution may ex-
ecute at different rates, and that any ordering of events
must occur as a result of planning. If events must oc-
cur in a specific order, programmers must either exe-
cute them in a single thread (which serialized events
into programmed order), or synchronization primitives
and communication primitives must be used so that or-
dering is either maintained during computation, or re-
stored during post-processing after the computation.

This is particularly relevant to the implementation
of the network stack, in which discrete units of work,
typically represented by packets, are processed in a
number of threads. The order of packets can have a
significant impact on performance, and so maintaining
necessary orders is critically important. For example,
out-of-order delivery of TCP packets can result in TCP
perceiving packet loss, resulting in a fast (and unneces-
sary) retransmit of data. Packet ordering must typically
be maintained with respect to its flow, where the gran-
ularity of the flow might include a stream of packets
sourced from a particular network interface, packets
between two hosts, or packets in a particular connec-



tion.
In the single-threaded FreeBSD 4.x receive path,

ordering is maintained throughout through the use of
last-in, first out (LIFO) queues between threads, ef-
fectively serializing processing. A single netisr thread
processes all inbound packets from the link layer to the
network layer. Naively introducing multithreading into
a network stack without careful consideration of order-
ing might be performed by simply introducing addi-
tional in-bound packet worker threads (netisrs). Figure
13 illustrates that this might result in misordering of
packets in a simple packet forwarding scenario: two
packets might be dispatched in one order to different
worker threads, and then be forwarded in reversed or-
der due to scheduling of the worker threads.

In FreeBSD 6.x, two modes of operation are docu-
mented for packet processing dispatch: queued serial-
ized dispatch with a single netisr thread, or direct dis-
patch of packet processing from the calling context. In
direct dispatch mode, context switches are reduced by
performing additional packet processing in the origi-
nating thread for a packet, rather than passing all pack-
ets to a single worker thread – for example, in the inter-
rupt thread for a network interface driver. This imple-
ments a weaker ordering by not committing to an or-
dered queue, but maintains sufficient ordering. Weak-
ened packet ordering improves the opportunities for
parallelism by permitting more concurrency in packet
processing, and is an active area of on-going work in
the SMPng Project. One downside to direct dispatch
in the ithread is reduced opportunity for parallelism, as
in-bound processing is now split between two threads:
the ithread and the receiving user thread, but not the
netisr.

Figure 13: Singlethreaded and naive multithreaded
packet processing, in which sufficient ordering is no
longer maintained

6 Status of the SMPng Network Stack

As of FreeBSD 6.0, the vast majority of network stack
code is run without the Giant lock in the default config-

uration. This includes most link layer network device
drivers and services, such as gigabit ethernet drivers
and ethernet bridging, ARP, the routing table, IPv4 in-
put, filtering, and forwarding, FASTIPSEC, IP mul-
ticast, protocol code such as TCP and UDP, and the
socket layer. In addition, many non-IP protocols, such
as AppleTalk and IPX are also MPSAFE.

Some areas of the network stack continue to require
Giant, and can generally be put in two categories:

• Code that requires Giant for correctness (perhaps
due to interacting with another part of the kernel
that requires Giant), but can be executed with Gi-
ant but an otherwise Giant-free network stack.

• Code that requires Giant for correctness, but due
to lock orders and construction of the network
stack, requires holding Giant over the entire net-
work stack when used.

In the former category lie the KAME IPSEC im-
plementation and ISDN implementation. Giant is re-
quired over the entire stack because these code paths
can be entered in a variety of situations where other
locks (such as socket locks) can already be held, pre-
venting Giant from being acquired when it is discov-
ered the non-MPSAFE code will be entered. Instead,
Giant must be acquired in advance unconditionally.

Other areas of the system also continue to require
the Giant lock, such as a number of legacy ISA
network device drivers and portions of the in-bound
IPv6 stack. In both cases, Giant will be condition-
ally acquired in an asynchronous execution context
before invoking the non-MPSAFE code. A number
of consumers of the network stack also remain non-
MPSAFE, such as the Netware and SMB/CIFS file
systems. With the FreeBSD 6.0 VFS now able to
support MPSAFE file systems, locking down of these
file systems and removal of Giant is now possible; in
the mean time, they execute primarily in VFS con-
sumer threads that will already have acquired Giant,
and not synchronously from network stack threads that
run without Giant, permitting the network stack to op-
erate without Giant.

Components operating with Giant for compatibility
continue to see higher lock contention and latency due
to asynchronous execution. It is hoped that remaining
network stack device drivers and protocols requiring
Giant will be made MPSAFE during the 6.x branch
lifetime.

7 Related Work

Research and development of multiprocessor systems
has been active for over forty years, and has been per-
formed by hundreds of vendors for thousands of prod-
ucts. As such, this section primarily points the reader
at a few particularly useful books and sources relevant



to the SMP work on FreeBSD, rather than attempting
to capture the scope of prior work in this area.

Curt Schimmel provides a detailed description of
multiprocessor synchronization techniques and the ap-
plication in UNIX system design inUNIX Systems for
Modern Architectures, including detailed discussion of
design trade-offs [14].

Uresh Vahalia provides general discussion of ad-
vanced operating system kernel architectures across a
number of UNIX systems inUNIX Internals[15].

The FreeBSD SMPng architecture has been signif-
icantly impacted by the design and implementation
strategies of the Solaris operating system, discussed
in Solaris Internalsby Jim Mauro and Richard Mc-
Dougall [9].

The Design and Implementation of 4.4BSDby Kirk
McKusick, et al, describes earlier BSD kernel archi-
tecture, and particularly synchronization, in great de-
tail, and makes a useful comparison withThe De-
sign and Implementation of the FreeBSD Operating
Systems, which describes the FreeBSD 5.x architec-
ture [10] [11].

A good general source of information on multipro-
cessing and multithreading programming techniques,
both for userspace and kernel design, are the design
and implementation papers relating to the Mach oper-
ating system project at Carnegie Mellon [3].

8 Future Work

Remaining work on the SMPng network stack falls pri-
marily into the following areas:

• Complete removal of Giant requirement from all
remaining network stack code (device drivers,
IPv6 in-bound path, KAME IPSEC).

• Continue to explore improving performance and
reducing overhead through refining data struc-
tures, lock strategy, and lock granularity, as well
as further exploring synchronization models.

• Continue to explore improving performance
through analyzing cache footprint, inter-
processor cache interactions, and so on.

• Continue to explore how to further introduce use-
ful parallelism into network processing, such as
additional parallel execution opportunities in the
transmit path and in network interface polling.

• Continue to explore how to reduce latency in pro-
cessing through reducing queued dispatch, such
as via network interface direct dispatch of of the
protocol stack.

It is expected that the results of this further work will
appear in future FreeBSD 6.x and 7.x releases.

9 Acknowledgments

The SMPng Project has been running for five years
now, and has had literally hundreds of contributors,
whose contributions to this work have been invaluable.
As a result, not all contributors can be acknowledged
in the space available, and the list is limited to a subset
who have worked actively on the network stack parts
of the project.

The author greatfully acknowledges the contribu-
tions of BSDI, who contributed prototype reference
source code for parts of a finer-grained implemen-
tation of the BSD kernel, and specifically, network
stack, as well as their early development support for
the SMPng Project as a whole. The author also wishes
to recognize the significant design, source code de-
velopment, and testing contributions of the following
people without whom the Netperf project would not
have been possible: John Baldwin, Antoine Brodin,
Jake Burkholder, Brooks Davis, Pawel Dawidek, Ju-
lian Elischer, Don Lewis, Brian Feldman, Andrew Gal-
latin, John-Mark Gurney, Paul Holes, Peter Holm, Jef-
frey Hsu, Roman Kurakin, Max Laier, Nate Lawson,
Sam Leffler, Jonathan Lemon, Don Lewis, Scott Long,
Warner Losh, Rick Macklem, Ed Maste, Bosko Mile-
kic, George Neville-Neil, Andre Oppermann, Alfred
Perlstein, Luigi Rizzo, Jeff Roberson, Mike Silber-
back, Bruce Simpson, Gleb Smirnoff, Mohan Srini-
vasan, Mike Tancsa, David Xu, Jennifer Yang, and
Bjoern Zeeb.

Financial support for portions of the Netperf Project
and test hardware was provided by the FreeBSD foun-
dation. The Netperf Cluster, a remotely managed clus-
ter of multiprocessor test systems for use in the Netperf
project, has been organized and managed by Sentex
Communications, with hardware contributions from
FreeBSD Systems, Sentex Communications, IronPort
Systems, and George Neville-Neil. Substantial addi-
tional testing facilities and assistance have been pro-
vided by the Internet Systems Consortium (ISC), Sand-
vine, Inc., and Yahoo!, Inc. The author particularly
wishes to acknowledge Kris Kennaway for his ex-
tended hours spent in testing and debugging SMPng
and Netperf Project work as part of the FreeBSD pack-
age building cluster.

10 Conclusion

The FreeBSD SMPng Project has now been running
for five years, and has transformed the architecture of
the FreeBSD kernel. The resulting architecture makes
extensive use of threading, fine-grained and explicit
synchronization, and offers a foundation for a broad
range of future work in exploiting new hardware plat-
forms, such as NUMA. The FreeBSD SMPng network
stack permits the parallel execution of the network
stack on multiple processors, as well as a fully pre-
emptive network stack. In this paper, we’ve presented



background on MP architectures, an introduction to the
SMPng Project and recent work on SMP in FreeBSD,
and the design principles and challenges in adapting
the network stack to this architecture.

11 Availability

The results of the SMPng Project began appearing in
FreeBSD releases beginning with FreeBSD 5.0. The
FreeBSD 6.x branch reflects further completion of
SMPng tasks, and significant refinement of the work
in FreeBSD 5.x. General information on the FreeBSD
operating system, as well as releases of FreeBSD may
be found on the FreeBSD web page:

http://www.FreeBSD.org/

Further information about SMPng may be found at:

http://www.FreeBSD.org/smp/

The Netperf project web page may be found at:

http://www.FreeBSD.org/projects/netperf/

References

[1] BALDWIN , J. Locking in the Multithreaded FreeBSD Kernel.
In Proceedings of BSDCon’02(February 2002), USENIX.

[2] BOURKE, T. Super smack.
http://vegan.net/tony/supersmack/.

[3] CARNEGIE MELLON UNIVERSITY. The Mach Project Home
Page.
http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html.

[4] FREEBSD PROJECT. FreeBSD home page.
http://www.FreeBSD.org/.

[5] FREEBSD PROJECT. FreeBSD Netperf Project.
http://www.FreeBSD.org/project/netperf/.

[6] FREEBSD PROJECT. FreeBSD SMP Project.
http://www.freebsd.org/smp/.

[7] HSU, J. Reasoning about SMP in FreeBSD. InProceedings of
BSDCon’03(September 2003), USENIX.

[8] L EHEY, G. Improving the FreeBSD SMP Implementation. In
Proceedings of FREENIX Track: 2001 USENIX Annual Tech-
nical Conference(June 2001), USENIX.

[9] M AURO, J., AND MCDOUGALL , R. Solaris Internals: Core
Kernel Architecture, 2001.

[10] MCKUSICK, M., BOSTIC, K., KARELS, M., AND QUAR-
TERMAN, J. The Design and Implementation of the 4.4BSD
Operating System, 1996.

[11] MCKUSICK, M., AND NEVILLE -NEIL , G. The Design and
Implementation of the FreeBSD Operating System, 2005.

[12] M ILEKIC , B. Network Buffer Allocation in the FreeBSD
Operating System.
http://www.bsdcan.org/2004/papers/NetworkBufferAllocation.pdf.

[13] ROBERSON, J. ULE: A Modern Scheduler for FreeBSD. In
Proceedings of BSDCon’03(September 2003), USENIX.

[14] SCHIMMEL , C. UNIX Systems for Modern Architectures,
1994.

[15] VAHALIA , U. UNIX Internals: The New Frontiers, 1996.


